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The eigenfunction method is used to calculate the transformation coefficients ():l I [v] ,~,V'l !:,21) 
from the Yamanouchi basis of the permutation group Sf, + f2 to the Sf, + J, -:JSf , ® Sf2 irreducible 
basis. A program in FORTRAN is written, and tables of the transformation coefficients for the 
permutation group Sf up to 1= 6 are given. Possible applications of the transformation 
coefficients are sketched. 

PACS numbers: 02.20.Qs, 03.65.Fd 

I. INTRODUCTION 

The transformation coefficients (or transformation ma­
trix) of the permutation group (abbreviated as TC) were first 
introduced by Jahn I and Kaplan2 in constructing orbital wa­
vefunctions for a multishell configuration. These coefficients 
play an important role in nuclear structure calculations and 
molecular and atomic calculations, and have been studied 
extensively by Jahn, I Kaplan,2 Horie,3 Kramer,4.5 and 
Sarma. 6 

In Refs. 7 and 8 it was shown that the calculation of 
many particle FPC (fractional parentage coefficients) for the 
group Chains SU(mnpSU(m)xSU(n) and SU(m + n) 
-:JSU(m) ® SU(n) needs the TC. Kramer4.5 and Kramer and 
Seligman9 showed that the Racah coefficients and 9v coeffi­
cients of the unitary group, SU(n), can be expressed in terms 
of the TC. Therefore, if one has a simple algorithm to calcu­
late these transformation coefficients, one would be able to 
calculate the Racah and 9v coefficient ofSU(n) with arbi­
trary n. Unfortunately, such an algorithm did not exist up to 
now. Kaplan2 used the projection operator method to calcu­
late the transformation coefficients. As pointed out by Ku­
kulin, Smirnov, and Majling,1O such a calculation is very 
cumbersome for a large number of particles. Sarma6 suggest­
ed an algorithm for TC; however, it is still not convenient for 
computer calculation. 

Based on a new approach to group representation the­
ory, 11-1.1 a powerful and versatile technique, the eigenfunc­
tion method, has been developed. This method is easily im­
plemented on computers. Three programs are available for 
evaluating the CG (Clebsch-Gordan) coefficients and ORC 
(outer-product reduction) coefficients 14 of the permutation 
group and the single-particle FPC for the group chain 
SU(mn)-:JSU(m)XSU(n).15 In this paper we will describe the 
calculation of the TC by the eigenfunction method. An effi­
cient program has been written and systematic tables of the 
TC have been obtained. The next paper will be devoted to the 
calculation of the Racah coefficients ofSU(n) for arbitrary n. 

II. TRANSFORMATION COEFFICIENTS OF 
PERMUTATION GROUPS 

Let 

(1 ) 

be the Sf -:JSf , ® Sf, irreducible basis which belongs to the 
irrep (irreducible representation [v] of Sf withl = II +/2' 
and at the same time the Yamanouchi basis [vl]m l of Sf, 

=Sf,(1,2, "'/I)and[v2]m20fSf , =Sf,(fl + 1, ... /),where 
m I and m 2 enumerate the Yamanouchi vectors of the irreps 
[VI] and [v2] of the groups Sf, and Sf,' respectively, Tis a 
multiplicity label, [VIV2Vj is the number of times that the 
representation ([VI],[V2]) of Sf, and Sf, occurs in the irrep [v] 
of Sf' and the m i can be regarded either as Yamanouchi 
symbols or the indices for the basis vectors of the irrep [Vi] 
in the so-called decreasing page order for the Yamanouchi 
symbols. 161t was shown 13 that thel - 1 two-cycle class op­
erators C(f), C(f - 1), ... ,C(2) of the permutation groups 
Sf,Sf _ I , '" ,S2 constitute the so-called second kind of com­
plete set of commuting operators (CSCO-I1) of Sf' and their 
simultaneous eigenvectors constitute the Yamanouchi basis 
of Sf' Consequently, [Vi] m i can also be viewed as the eigen­
values of the CSCO-II of S/" namely, 

(v l ,m 1) = (Af,.Af,-I'·" .A2)' 

(v2m2) = (Af' .Af, - I , ... .A2)' 
(2) 

where Ai is the eigenvalue ofC(i),vl = Af,' V 2 = Af" and m l 
and m 2 symbolize the rest of the respective sets of eigenval-
ues. 

The Sf -:J Sf, ® Sf, irreducible basis can be expanded in 
terms of the Yamanouchi basis 1):1) of Sf: 
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TheTC 

(
[v] I [v],T[VI][Vl ]) 

m mlm l 

satisfy the unitarity conditions 

I ([v] I [v],r[VI][Vl ]) ([v~ I [v],r[VI][Vl ]) 

v,m,r m mlml m m1ml 

=8mm·, 

(4) 

= 8 ,8 ,8rr .. V2 V 2 rn2rn2 

According toTheorem4in Ref. 13, theSf~Sf, ®Sf, irredu­
cible basis must satisfy the following eigenequations: 

C(f) 

C(fl) 

C(SI) 

C'(fl) 

C(Sl) 

(5) 

where C(f) is the CSCO-I of Sf' which in the most useful 
cases consists of the two-cycle and three-cycle class opera­
tors of Sf' while (C(fd, C(SI)) and (CUl)' C'(Sl)) are the 
CSCO-II of Sf, and Sf,' respectively: 

(C(fd,C(Sd) = (C(fI),C(f1 - 1), ... ,C(2)), 

(C'(fl),C'(Sl)) = (C'(fl),C'(f2 - 1), ... ,C'(2)), 

1 

C(l) = I (ij), 
i>j= I 

f, +1 

C'(l) = I (ij), 
;>j=f, + 1 

(6) 

where (ij) is the transposition operator. Since the Yamanou­
chi basis of Sf is necessarily a Yamanouchi basis of Sf,' the 
lastfl - 1 eigenvalues in the eigenvalue set 
(v,m) = (Af,A.f-1 , ... ,A.f" ... ,A.l) of the CSCO-II of Sf are just 
the eigenvalues (vl,m I) of the CSCO-II of Sf,' i.e., 

(v,m) = (Ar'Af, + I,vlm l ). (7) 

Therefore, the TC 

(
[v] I [v],T[Vd[Vl ]) 

m m1m l 

is zero unless (7) is satisfied. The summing index min (3) is 
restricted to the quantum numbers Af - I "'Af, + I' Further­
more, according to the Schur lemma, the TC is independent 
of m I' Thus the label m 1 in the TC is redundant in the sense 
that the TC differing only in m 1 have identical values. How-
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ever, it is better to retain this redundant label so that the 
summing index min (3) can again be viewed as free. 

As we said, each term on the rhs of(3) is already an 
irreducible basis of Sf and Sf,; consequently, to find the TC, 
we merely need to diagonalize the CSCO-II of Sf, in the 
Yamanouchi basis I~l) with fixed [vl]m l. 

(8) 

For fixed [v] and [vl]m l , there are hJhv different Yaman-
I 

ouchi basis vectors I!:l), hv and hv, being the dimensions of 
the irreps [v] and [VI]. Thus the index m' in (8) only takes 
hv1hv, possible values. In practical calculation, m l can be 
chosen arbitrarily, for example, m l = 1 (the first compo­
nent). 

In Ref. 13 it was pointed out that, for computer calcula­
tion, it is more convenient to choose a single operator 

f, 
M= Ik;C'(i) (9) 

i= 2 

as the CSCO-II of Sf,' where the k; are coefficients appro­
priately chosen. For example, we may choose k; = i + 7. 
The eigenvalues A of M and (vl,m l ) have a one-to-one corre­
spondence for Sl-S7: 

f, 

A = I (i + 7)A.;+-+(v2ml )· (10) 
i=2 

The set of eigenequations (8) can be replaced by a single ei­
genequation, 

(11 ) 

The matrix elements of M can be calculated easily by using 
the Yamanouchi irreducible matrix elements. 16 In solving 
the eigenequation, if the eigenvalue A [or, correspondingly, 
(vz,mz)] has d-fold degeneracy, then! VIVlVj = d. For this 
eigenvalue A we have d linearly independent eigenvectors 
which can be chosen orthogonal with respect to the multi­
plicity labels 1" as shown in (4). 

In order that the basis vectors 

with different m l have the correct, i.e., the Yamanouchi, 
relative phases, we use the technique given in Ref. 13. Equa­
tion (59b) in Ref. 13 now takes the following form: 

I 
T[Vd[vz)) 

[v], I 

mlm, 

1 [T~ _D~,l (T
l

)] I [V],T[VI ) [v l )), 

D Jv;l (T) ,m, m l m 2 m2m~ 2 

(12) 
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where 

T~ = (i,i + I)65'f,1/1 + 1···/), 

Tl = (i - II,i - II + I)65'fi(I2···ll)· (13) 

From (13) we have 

( [V~ I [v],T[vd[~z]) m mlmz 

1 ~[D[v) (T')-D[v,1 (T)8 ,] 
D [v;1 (T

l
) ~ m m 1 m,m, 1 mm 

m2m Z 

x([V]I[v],T[Vd[vz]). (14) 
m mlmz 

Therefore, for any irrep [V2] one only needs to find {vIVZv] 
orthogonal eigenvectors of (8) or ( 11 ) corresponding to a par-

U(VIVZVV3;VI2V13)~;;;' 

I 

ticular m2• By choosing appropriate adjacent permutation 
(i,i + 1),13 from (14) we can get all the other components m~ 
successively. We remove all sign arbitrariness by requiring 
the absolute phase convention that the first non vanishing 
coefficient of a nonstandard basis vector (3) (where the Ya­
manouchi basis vectors are enumerated in decreasing page 
orderl6) with mz = 1 be positive. 

III. APPLICATION OF THE TRANSFORMATION 
COEFFICIENT 

A. Calculation of Racah coefficients and 9v coefficients 
of SU{n) 

Kramer5 showed that the Racah coefficients of the 
group SU(n) can be expressed in terms of the TC 

I' ([v] I [v],T[V 12 ][V3])([V12 ] I [v 12 ],Td v I] [V2]) ([V] I [V],T[V I][V23 ]) ([V23 ] I [V23 ],T23 [Vl ][V3]) . (15) 
m"m"m m m 12m 3 m 12 m lm2 m mlmZ3 m23 m Zm 3 

The sum is carried out with fixed m I' m2' and m 3. In practical calculation we may set m I = mz = m3 = 1. Similarly, the 
9v coefficient of SU n can be expressed as 

Vz V12)T". T"T 
V4 V34 

V 24 V r"T24r' 

I D!,;'~'(P)([:] I [v],T[~2]~V34]) 
m'2m34m 12 34 
m 1Jm 24 m' 

where the sum is carried out under fixed m I' mz, m 3, and m4, 
and the permutation Pis 

p_ (II + 1'/1 + 2""'/11'/12 + 1""'/123) (17) 
- lIZ + 1'/12 + 2,···'/]23'/1 + 1""'/12 ' 

and J; is the number of boxes in the Young diagram [Vi]' 
112 = II + Iz, andl123 = 112 + J;. Since the TC of permuta­
tion groups are independent of n, the Racah coefficients and 
9v coefficients ofSU(n) do not depend on n explicitly. From 
the TC we can calculate these coefficients for arbitrary SU(n) 
once and for all. 

B. Calculation of the outer-product reduction 
coefficients 

Suppose there are two subsystems with particles 
(am = (I,2,···,/d and (w~) = (/1 + 1""'/1 +12 =/). Sup­
pose "''::., (w?) and "':::, (w~) are two wavefunctions ofthese two 
subsystems in some coordinate space, say x, which are the 
Yamanouchi bases of the permutation groups Sf, and Sfi, 
respectively. Using the so-called outer-product reduction 
coefficients (ORC)IZ C [vlT,m =c [vlT.m of the per-

v1ml,CtJ,.v2m2w vI·ml,v2m 2·w 

mutation group Sf' the wavefunction IjI !,;'IT of the total sys-
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(16) 

tern with a definite symmetry [v]m with respect to Sf and be 
constructed as 

where T = 1,2, ... , [vl,vzv] is the multiplicity label, with the 
multiplicity {vIVZv] determined by the Littlewood rule, 
(WO) = (1,2, ... ,/), and (w) = (wl,WZ)' Wi being the normal or­
der sequences 

(WI) = (alaZ .. ·af ,), (Wl) = (af , + I · .. af ), 

(I8b) 
al(aZ(· .. (af" af ,+I(af ,+2(· .. (af , 

a; representing any one of the numbers I,2, ... j. The ORC are 
also the coefficients for coupling the irreducible basis of 
SU(m) and SU(n) into the SU(m + npSU(m) ® SU(n) irre­
ducible basis. 12 In Ref. 12 a method is given for calculating 
the ORC and systematic tables ofORC for SZ-S6 are given. 
Using the Te, we now can find a much simpler way to calcu­
late the ORe. 

Using the left coset decomposition with respect to the 
subgroup Sf, ® Sf,' the permutation operator R of Sf can be 
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written as 

R = (:o)PIPZ = Q",PIPZ' (19) 

where PI ESt, , PzESh , and Q", = (:0) is a permutation opera­
tor which brings the natural order sequence (WO) = (1 ,2, ... ,J) 

I 

into the normal order sequence (w) = (wl,WZ). 
Introducing the projection operators 

(20) 

plv).r[vdmi[v2]m2=(~)IIZ '" ([V]IQ PP I[ ]7[Vl l[vz])Q PP 
m If £.. '" I Z V, m' m' '" I Z, 

• QwP,P, m I Z 
(21) 

it is easy to show that 

p~).r[VdmI[V2]m2 = (~)lIZ(/I~Z!rIZ I ([:] IQ", I [v],1"[~l~vzl) Q",p~dm;p~2]m'. 
hv, hV2 I· m,m,Qw I Z 

(22) 

Applying (21) to anI-particle product state I <Po) = Ii liz···if ) withl different single particle states i liz···if yields 

Similar expressions were given by Kaplanz and Kramer.4 

The label 7' in the lhs of(23) is used to distinguish the differ­
ent linearly independent functions resulting from using dif­
ferent superscripts in the projection operator (21). We can 
choose 7' = 7, since 7' and 7 have the same range and the 
choice of the additional label 7' is arbitrary. Comparing (23) 
with (18a), we get a new expression for the ORC, 

(24b) 

With the known TC and the Yamanouchi matrix element 
D !.:'~" it is easy to calculate the ORC from (24b). 

Setting Q", = e (identity, we have 

(
[ v] I [ ] 1"[ vll [VZ ]) = (hv,hv2 ) IIz(L) I12C IvJr,m 0 • 

V , h I' ,I', v.m.,v2m 2'w 
m mlmz v ..!1i1Z· 

(25) 

C. Calculation of the transformation coefficients from 
the SU(m + n) Gel'fand basis to the 
SU(m + n)::::> SU(m) ® SU(n) irreducible basis 

The transformation coefficients between the Gel'fand 
basis I~J) ofSU(m + n)and theSU(m + npSU(m)®SU(n) 
irreducible basis 
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(23) 

I 
are defined by the following expansion: 

I [v],1"[VI][vzl) = II [vl) ([vll [V],7[V I][vzl), 
wlWZ w W W WIWZ 

(26) 

where WI' Wz, and Ware the Weyl tableaux corresponding 
to the groups SU(m), SU(n), and SU(m + n), respectively, 
and 7 is the multiplicity label. In Ref. II(c) it was shown that 
the coefficients 

/[Vll [V],7[VI][vzl) 
\ W WIWZ 

are related to the TC of the permutation group: 

( [Vll [v],1"[vll [vzl) 
W wlWZ 

-I' RlvJm(w) /[v]l[ ]7[Vtl [VZ]) (27) 
- m R [vdm'(wtJR [v2]m2(wz) \ m v, mlmz ' 

where R are normalization factors, 

R IvJm(w) = ((WI~fD !.:'~(p)p Iw)) 112 , 

(28) 

R [v;Jm;(wi) = ( (Wi Iltf,D t,l;(p)p I Wi) ) liZ, i = 1,2 

and Iw), Iwl ), and Iwz) arethej-JI-' andlz-particleproduct 
states, respectively, for example Iw) = liliz .. ·if ). The Dare 
the Yamanouchi matrix elements of the permutation group. 
The prime in the summation symbol means that the sum 
over m is under the restriction that when the number 
1,2, ... ,Jin the Young tableaux y~'J are replaced by the 
single particle state labels i I,iz, ... ,if' the Young tableaux 
y!.:'J must go over to the Weyl tableaux W. 

Using (27), it is easy to calculate the transformation co­
efficients of unitary groups, which also do not depend on m 
and n explicitly. 
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We know that the unitary group approach pioneered by 
Moshinskyl7 for the nuclear many-body problem turns out 
to be very powerful for the many-electron problem, as devel­
oped mainly by Paldus 18 and Matsen et al. 19 in the so-called 
spin-free quantum chemistry. A considerable progress has 
been made in both the development and actual implementa­
tion of the unitary group approach to the large scale ab initio 

TABLE 1.1. The phasefactors A ;;''' 

S, S4 S5 

[21] [31] [22] [211] [41] [32] 
[51] 

I 2 I 2 3 I 2 I 2 3 I 2 3 4 I 2 345 

+- +-++- +-+ +-+- +-++-

and semiempirical configuration interaction calculation of 
correlated electronic wavefunctions of molecules. 20 How­
ever, in the Matsen or Paldus approach, the point-group 
symmetry of the molecule has not been incorporated. In Ref. 
21 many-electron states with definite spin and point-group 
symmetry are constructed. The transformation coefficients 
from this symmetry-adapted basis to the Gel'fand basis can 

S6 

[311] [221] [21'] [21 3
] 

I 2 345 6 I 2 345 I 2 3 4 I 2 345 

+-++-- +--+- +-+- +-+-+ 

[42] [411] [33] [321] 

I 234 5 6 7 8 9 I 2 3 4 5 6 7 8 9 10 I 2 3 4 5 I 2 3 4 5 6 7 8 9 10 II 12 \3 1415 16 

+-+-+-++- +-+-+-++-+ +-++- +-++--+--+--++-+ 

[2'] [2'1'] 

12345678910 I 2 3 4 5 I 234 5 6 7 8 9 I 2 345 

+-++-+-+-+ +--+- +--+-+-+- +-+-+ 

aWe use decreasing page order for the Yamanouchi symbols (r/r/_, ... r,r,). 

TABLE 1.2. The ordering of the irreps. 

S, S4 S5 

I 2 I 2 3 I 2 3 4 5 I 2 3 4 5 6 7 

[v] [2][11] [3][21][ I'] [4][3I][22][211]W] [5][41 ][32][311 ][221 ][21 3][1 5
] 

I 2 3 4 5 6 7 8 9 10 II 

[v] [6][51 ][42][411 ][33][321 ][31'][23][2'I'][214 ][I"] 

TABLE 1.3. The phase E(V,V,V). 

[v,][v2 ][v] E [v,][v2] [v] E [v,][v2][v] E [v,][v,][v] E 

[1][3][31] + [1][5][51] + [2][22][42] + [11][31][411] 
[1][21] + [1][41] + [3][3] + [3][21] 
[1][4][41] [2][4] [3][21] [3][1'] + 
[1][31] + [2][31] + [21][3] + [21][3] + 
[2][3] + [3][3] + [21][21] + [21][21] + 
[2][21] + [3][21] + [1][41][411] [1][32][33] + 
[I ][31 ][32] + [1][41][42] [1][3\1] + [2][31] 
[1][22] + [1][32] + [2][31] + [21][21] + 
[2][3] + [2][4] + [2][221] + 
[2][21] [2][31] + [11][4] + 
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be easily evaluated from the Clebsch-Gordan coefficients of 
the point group and the transformation coefficients of uni­
tary groups. Therefore, the transformation coefficients from 
the SU(m + n):::> SU(m) ® SU(n) basis to the SU(m + n) Gel­
'fand basis may have important application in quantum 
chemistry. 

Other applications of the TC of the permutation group 
can be found in Refs. 2 and 4-9. 

IV. THE TABLES OF THE TC 

The TC for 12 = 1 are trivial: 

([:]I[V][V~~l])=1 ifm[vl]m l 

= 0 otherwise. 

TABLE II.!. Group S4' irrep [31]./, = 1./2 = 3. 

Standard basis vectors 

v, m, v, m2 T Com. den. 

I 9 
2 I 36 
2 2 4 

TABLE 11.2. Group S4' irrep [22]./, = 1./2 = 3. 

Standard basis vectors 

v, m, V2 m, T Com. den. 

2 4 
2 2 4 

TABLE 11.3. Group S,. irrep [41]./, = 1./2 = 4. 

Standard basis vectors 

v, m, v, m2 T Com. den. 

48 3 
2 I 144 135 
2 2 36 0 
2 3 4 0 

TABLE 11.7. GroupS,. irrep [311].,/; = 1.1, = 4. 

I 
32 
0 

Standard basis vectors 

v, m, V2 m 2 T 

2 
2 2 
2 3 
4 1 
4 2 
4 3 

2 3 

2 6 
-I -3 

3 -I 

2 

I 3 
3 -I 

2 3 4 

5 10 30 
-I -2 -6 

32 -I -3 
0 3 -I 

Com. den. 

9 
576 
192 
192 
576 

9 
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The TC for 12 = 2 can be calculated by a simple formula 1.2 

and therefore are left out of the tables. Due to the symmetry 
of the TC under conjugation4,22 

( [~] \ [v],r[~]~V2]) m m 1m2 

__ ( )A V A V 'A v
2 ([V]\[ ] 7[V1 ][V2 ]) E V1V2Vr m m m V , , 

, 'm m 1m2 

(29a) 

when [V I],[V2], and [v] are not simultaneously self-conjugate, 
[v]m is the conjugate tableau of[v]m,A 's are phases 16 which 
we tabulate in Table 1.1, andE(v1v2vr = Eisa phase. Accord­
ing to the absolute phase convention, we have 

E=Sgn(A;;'A~,A~~ ([V]\[V],7[V 1 ][V2
]))\ • (29b) 

, m m 1m2 m~max 

TABLE 11.4. Group S,. irrep [41]./, = 2./2 = 3. 

Standard basis vectors 2 3 4 

v, m, v2 Com. den. 

I 18 3 5 10 0 
2 18 IS -I -2 0 
2 2 3 0 2 -I 0 

2 0 0 0 

TABLE 11.5. Group S,. irrep [32]./, = 1./, = 4. 

Standard basis vectors 2 3 4 5 

v, m, v, m2 T Com.den. 

2 9 I 2 6 0 0 
2 2 144 32 -I -3 27 81 
2 3 16 0 3 -I 9 -3 
3 I 48 32 -I -3 -3 -9 
3 2 16 0 9 -3 -3 

TABLE 11.6. Group S,. irrep [32]./, = 2./2 = 3. 

Standard basis vectors 2 3 4 5 

v, m, V 2 m 2 T Com. den. 

9 2 0 6 0 
2 9 2 4 0 -3 0 

I 2 2 3 2 -I 0 0 0 
2 2 I I 0 0 0 0 
2 2 2 0 0 0 0 

2 3 4 5 6 

I 2 6 0 0 0 
- 32 I 3 135 405 0 

0 -9 3 -15 5 160 
160 -5 - IS 3 9 0 

0 405 - 135 -3 I 32 
0 0 0 6 -2 
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TABLE II.S. Group Ss. irrep [311].!. = 2.h. = 3. 

Standard basis vectors 2 3 4 5 6 

v, m, V 2 m2 1" Com. den. 

I 2 3 2 0 0 0 0 
I 2 2 IS -2 I 0 15 0 0 
I 3 I IS 10 -5 0 3 0 0 
2 I I IS 0 0 3 0 5 10 
2 2 I IS 0 0 15 0 -I -2 
2 2 2 3 0 0 0 0 2 -I 

TABLE 11.9. Group So. irrep (51)./, = 1.h. = 5. 

Standard basis vectors 2 3 4 5 

v, m, V 2 m 2 1" Com. den. 

50 2 3 5 10 30 

2 I 1200 1152 -3 -5 -10 - 30 

2 2 144 0 135 -I -2 -6 

2 3 36 0 0 32 -I -3 

2 4 4 0 0 0 3 -I 

TABLE 11.10. Group So. irrep (51)./, = 2./2 = 4. 

Standard basis vectors 2 3 4 5 

v, m, V 2 m2 1" Com. den. 

I I 20 2 3 5 10 0 
2 I ISO 162 -3 -5 -10 0 

I 2 2 IS 0 15 -I -2 0 
I 2 3 3 0 0 2 -I 0 
2 I I I 0 0 0 0 1 

TABLE 11.11. Group So. irrep [51).!. = 3./2 = 3. 

Standard basis vectors 2 3 4 

v, m, V 2 m 2 1" Com. den. 

1 I I 10 2 3 5 0 
I 2 I 40 32 -3 -5 0 
1 2 2 S 0 5 -3 0 
2 1 1 1 0 0 0 I 
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TABLE 11.12. Group S6> irrep [42]./, = I,f, = 5. 

2 
2 
2 
2 
3 
3 
3 
3 

Standard basis vectors 

2 
3 
4 
I 
2 
3 
4 

T Com. den. 

48 
1296 
324 

36 
162 

1296 
144 
48 
16 

TABLE 11.13. Group S6' irrep [42]./, = 2./, = 4. 

I 
I 
2 
2 

v, 

2 
2 
2 
3 
3 
2 
2 
2 

Standard basis vectors 

2 
3 

2 

2 
3 

T Com. den. 

108 
108 
54 
9 

27 
9 

TABLE II.I4. Group S", irrep [42]./, = 3./, = 3. 

2 
2 
2 

v, 

2 
2 
1 
2 
2 

Standard basis vectors 

m, 

1 
2 
I 

2 

T 

TABLE 11.15. Group So, irrep [411]./, = 1./, = 5. 

v, m, 

Standard basis vectors 

v, 

2 
2 
2 
2 
4 
4 
4 
4 
4 
4 

m, 

2 
3 
4 
1 
2 
3 
4 
5 
6 

T Com. den. 

48 
3600 
1800 
200 
450 

14400 
4800 

192 
576 

9 

3 
135 

o 
o 

135 
o 
o 
o 
o 

3 
15 
15 
o 

15 
o 
o 
o 
o 

2 

5 
-I 

32 
o 

-I 
1024 

o 
o 
o 

2 

5 
25 
-I 

2 
-I 

4 
o 
o 
o 

Com. den. 

18 
72 

8 
9 

36 
4 

3 
-135 

o 
o 

405 
o 
o 
o 
o 
o 

2 

5 
1 

- 64 
o 

-3 
12288 

o 
o 
o 
o 
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3 

10 
-2 
-I 

3 
-2 

4 

30 
-6 
-3 
-1 
-6 

5 

o 
128 
64 
o 

-2 
- 32 -96 - 32 

3 
15 
5 
o 
o 
o 

96 
o 
o 

3 

10 
50 

-2 
-I 
-2 
-2 

o 
o 
o 

3 

- 32 
o 
o 

4 

o 
o 
o 
o 
o 
o 

o 
o 

2 

5 
25 

-3 
o 
o 
o 

4 

o 
32 
o 

5 

10 
-2 

8 
4 

-2 
-2 

5 

o 
o 
o 

3 

o 
o 
o 
I 

32 
o 

10 30 0 
2 6 384 
2 6 - 96 

- 6 2 0 
- 6 -18 2 

- 384 - 1152 - 32 
3456 - 1152 0 

o 0 160 
o 0 0 
o 0 0 

6 

6 

o 
256 
-2 

6 
-4 

I 
-3 
-I 

9 

6 

20 
-4 

16 
-2 
-4 

I 
o 
o 
o 

5 

10 
- 32 

o 
o 
o 
o 

7 

7 8 

o 0 
768 0 
- 6 54 
- 2 18 

- 12 0 
3 - 27 
I -9 

-3 -3 
-3 -3 

7 

o 
o 
o 
o 
o 
o 
o 
I 
o 

6 

o 
o 
o 
2 

-I 
3 

8 

8 

60 
-12 
-12 

o 
3 
o 
o 
o 
o 

o 0 0 
768 2304 0 

8 

o 
o 
o 
6 

-3 
-1 

9 

9 

o 
o 

162 
-6 

o 
- 81 

3 
-9 

9 

o 
o 
o 
o 
o 
o 
o 
o 
I 

10 

o 0 
o 0 

3 9 405 1215 0 
- 9 3 - 15 5 160 

4 12 0 o 0 
1 3 135 405 0 

- 9 3 - 15 5 160 
- 5 - 15 3 9 0 
405 - 135 - 3 1 32 

o 0 6 -2 1 
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TABLE 11.16. Group So. irrep [411 ]'/, = 2, h = 4. 

Standard basis vectors 2 3 4 5 6 7 8 9 10 

V, m, V, m, 1" Com. den. 

1 1 2 1 18 3 5 10 0 0 0 0 0 0 0 
1 1 2 2 180 15 1 2 0 54 108 0 0 0 0 
1 1 2 3 60 0 -4 2 0 -6 3 0 45 0 0 
1 1 4 1 60 45 -3 -6 0 2 4 0 0 0 0 
1 1 4 2 180 0 108 -54 0 -2 0 15 0 0 
1 1 4 3 18 0 0 0 0 10 -5 0 3 0 0 
2 1 1 1 20 0 0 0 2 0 0 3 0 5 10 
2 2 1 180 0 0 0 162 0 0 -3 0 -5 -10 
2 2 2 18 0 0 0 0 0 0 15 0 -1 -2 
2 2 3 3 0 0 0 0 0 0 0 0 2 -1 

TABLE 11.17. Group S6' irrep [411],/, = 3,/, = 3. 

Standard basis vectors 2 3 5 6 8 10 

V, m , V, m, 1" Com. den. 

2 1 8 3 5 0 0 0 0 0 
2 2 40 -5 3 0 32 0 0 0 
3 1 10 5 -3 0 2 0 0 0 

2 1 1 10 0 0 2 0 3 0 0 
2 2 1 40 0 0 32 0 -3 -5 0 
2 2 2 8 0 0 0 0 5 -3 0 
3 1 0 0 0 0 0 0 1 

TABLE 11.18. Group S6' irrep [33],/, = 1,/, = 5. TABLE 11.20. Group So. irrep [33],ft = 3,h = 3. 

Standard basis vectors 2 3 4 5 Standard basis vectors 2 4 

V, m, V, m, 1" Com. den. V, m, V, m, 1" Com. den. 

3 9 1 2 6 0 0 1 0 0 
3 2 144 32 -1 -3 27 81 2 2 1 4 0 1 3 
3 3 16 0 3 -1 9 -3 2 2 2 4 0 3 -1 
3 4 48 32 - 1 -3 -3 -9 
3 5 16 0 9 -3 -3 1 

TABLE 11.19. Group S6' irrep [33],ft = 2,h = 4. 

Standard basis vectors 2 3 4 5 

V, m , V2 m2 1" Com. den. 

1 2 1 9 1 2 0 6 0 
1 2 2 9 2 4 0 -3 0 
1 2 3 3 2 -1 0 0 0 
2 3 1 1 0 0 1 0 0 
2 3 2 1 0 0 0 0 1 

2703 J. Math. Phys., Vol. 24, No. 12, December 1983 Chen, Collinson, and Gao 2703 



                                                                                                                                    

I\) 
-..I 
0 

""" TABLE 11.21. Group S6' irrep [321]'/, = 1'/2 = 5. 

~ 
Standard basis vectors 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

!: 
a v, m, V 2 m 2 7' Com. den. 
?' 
'"0 

36 1 2 6 0 0 3 6 18 0 0 0 0 0 0 0 0 ::::J' 3 1 '< 
!I' 3 2 2304 128 -4 -12 108 324 -96 3 9 405 1215 0 0 0 0 0 0 
< 3 3 256 0 12 -4 36 -12 0 -9 3 -15 5 160 0 0 0 0 0 
0 
:- 3 4 768 - 32 1 3 3 9 0 0 0 0 0 0 45 135 135 405 0 
I\) 

256 0 -9 3 3 -1 0 0 0 0 0 0 45 -15 -15 5 160 .""" 3 5 
z 4 1 36 3 6 18 0 0 -1 -2 -6 0 0 0 0 0 0 0 0 
0 
~ 4 2 2304 384 -12 - 36 324 972 32 -1 -3 - 135 -405 0 0 0 0 0 0 
.1\) 4 3 768 0 108 - 36 324 -108 0 9 -3 15 - 5 - 160 0 0 0 0 0 
0 4 4 768 0 0 0 0 0 160 -5 -15 3 9 0 108 324 - 36 -108 0 <D 
0 4 5 2304 0 0 0 0 0 0 405 - 135 -3 1 32 972 - 324 36 -12 -384 <D 
3 4 6 36 0 0 0 0 0 0 0 0 6 -2 1 0 0 18 -6 3 0' 
5!l 5 1 256 160 -5 -15 -15 -45 0 0 0 0 0 0 1 3 3 9 0 
co 5 2 768 0 405 - 135 - 135 45 0 0 0 0 0 0 9 -3 -3 1 32 
Q) 

5 3 256 0 0 0 0 0 160 -5 -15 3 9 0 -12 - 36 4 12 0 t.> 

5 4 2304 0 0 0 0 0 0 1215 - 405 -9 3 96 - 324 108 -12 4 128 
5 5 36 0 0 0 0 0 0 0 0 18 -6 3 0 0 -6 2 -1 

TABLE 11.22. GroupS6' irrep [321]./, = 2.h = 4. 

Standard basis vectors 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

v, m, V 2 m2 7' Com. den. 

2 9 1 2 0 6 0 0 0 0 0 0 0 0 0 0 0 0 
2 2 576 -2 -4 0 3 0 54 108 0 0 0 0 405 0 0 0 0 
2 3 192 -2 1 0 0 0 -6 3 0 45 0 0 0 0 135 0 0 
3 1 32 2 4 0 -3 0 6 12 0 0 0 0 -5 0 0 0 0 
3 2 32 6 -3 0 0 0 -2 1 0 15 0 0 0 0 -5 0 0 

() 4 1 192 30 60 0 -45 0 -10 - 20 0 0 0 0 27 0 0 0 0 
::::J' 

4 2 576 270 135 0 0 0 10 <D 
:;) 

-5 0 -75 0 0 0 0 81 0 0 . 
1 4 3 18 0 0 0 0 0 10 -5 0 3 0 0 0 0 0 0 0 () 

g, 2 2 1 18 0 0 0 0 0 0 0 3 0 5 10 0 0 0 0 0 
s· 2 2 2 576 0 0 81 0 0 0 0 75 0 -5 -10 0 0 0 135 270 fIl 
0 2 2 3 192 0 0 0 0 27 0 0 0 0 20 -10 0 45 0 60 - 30 .:;) 

III 2 3 1 32 0 0 5 0 0 0 0 15 0 -1 -2 0 0 0 -3 -6 
:;) 

2 3 2 32 0 0 0 0 5 a. 0 0 0 0 12 -6 0 -3 0 -4 0 
G> 2 4 1 192 0 0 135 0 0 0 0 -45 0 3 6 0 0 0 -1 -2 III 
0 2 4 2 576 0 0 0 0 405 0 0 0 0 - 108 54 0 -3 0 -4 2 

2 4 3 9 0 0 0 0 0 0 0 0 0 0 0 0 6 0 -2 1 

I\) 
-..I 
0 

""" 



                                                                                                                                    

TABLE 11.23. GroupS .. irrep [321],/. = 3'/2 = 3. 

Standard basis vectors 2 

V, m , V2 m, T Com. den. 

2 0 
1 2 2 1 0 0 
2 1 1 32 0 1 
2 2 1 24 0 4 
2 2 2 96 0 5 
2 2 2 1 24 0 -3 
2 2 2 2 96 0 
2 3 1 32 0 
3 2 1 1 0 
3 2 2 1 0 

The phases E are given in Table 1.3. 
Owing to (29a), we only tabulate the TC's for partitions 

whose row lengths are larger than or equal to their column 
lengths. Furthermore, since the TC's do not vary with m l , 

that is, are identical for different values of the m I index if all 
other indices are the same, we omit all TC's other than those 
for which m l = 1. 

The TC's given in Table II are displayed as rows, each 
with a common denominator entry followed by the numera­
tors. Each entry is understood to be under a square root sign, 
and if the TC is negative, the minus sign is given explicitly. 
The ordering of the irreps is given in Table 1.2. 
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Unitary representations of the (4 + 1 )-de Sitter group on irreducible 
representation spaces of the Poincare group 

P. Moylan 
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(Received 23 March 1982; accepted for publication 12 November 1982) 

The construction of the principal continuous series of unitary representations of the simply­
connected covering group of the (4 + I)-de Sitter group on unitary irreducible representation 
spaces of the Poincare group is presented. A unitary irreducible representation space of this 
covering group of the de Sitter group is realized as the direct sum of two irreducible representation 
spaces of the Poincare group. Possible physical implications are indicated. In particular, an 
interpretation of the instantaneous velocity operator in the Dirac theory as the spin part of the de 
Sitter boosts is given. We obtain a simple method of computing the matrix elements of the 
generators of the de Sitter group in an SO(4) basis using the matrix elements of the generators of 
the four-dimensional Euclidean group. Also we obtain explicit expressions for certain matrix 
elements between the spin or and SO(4) basis of the representation space as functions on the coset 
space SO(4)1S0(3). 

PACS numbers: 02.20.Qs, 1l.10.Qr, I1.30.Cp 

I. INTRODUCTION 

The importance of representation theory to wave equa­
tions has long been known. Its role in the solutions of partial 
differential equations is well known and has been discussed 
in many books. For example, in his book, The Theory of 
Spinors, Cartan discusses the relationship between groups 
and wave equations. He must have realized very early in the 
development of the quantum theory the connection ofrepre­
sentations with quantum mechanical equations. In his book, 
Linear Representations of the Lorentz Group, Naimark de­
termined all the Lorentz invariant equations which are lin­
ear in the momentum, including Dirac's new relativistic 
wave equation. I Poincare-invariant finite-dimensional 
spinor wave equations were discussed by Bargmann and 
Wigner2; they showed that to certain irreducible representa­
tion spaces of the Poincare group corresponds the space of 
solutions of a certain wave equation, which therefore de­
scribes a particle of a definite mass and spin. The results of 
this paper provide further elucidation of this relationship 
between representation theory and wave equations. In parti­
cular, the larger SO(4, 1) symmetry of the Dirac equation is 
constructed and should be compared with the usual Poin­
care symmetry of the theory. 

In the following, we will be concerned with two differ­
ent symmetry groups of the quantum mechanical wave equa­
tion for a positive mass particle with arbitrary integer or 
half-integer spin: the restricted Poincare group :3' and the 
identity component of the (4 + I)-de Sitter group, SOo(4,I). 
The Poincare group will be realized in the usual way as de­
scribed in Ref. 13, the generators of :3' being represented as 
essentially self-adjoint operators defined on an invariant 
dense domain contained in Jf"(m,s, + ), the positive mass 
unitary irreducible representation space (VIR) of :3' (s de­
notes the integer of half-integer spin and + means positive 
energy). The generators, in a VIR ofSO(4, I), will be realized 
as essentially self-adjoint operators defined on an invariant 
dense domain contained in Jf"(m,s, + ) Ell Jf"(m,s, + ). [Of 
course, by irreducible unitary representations we always 
mean single-valued representations of the simply connected 

covering groups associated with these groups, which we de­

note by "9 and SO(4,1).] The groups "9 and SO(4,1) are 
realized on Jf"(m,s, + ) and Jf"(m,s, + ) Ell Jf"(m,s, + ), re­
spectively. This result, combined with the fact that 
Jf"(m,s, + ) has the following decomposition into irreducible 

representation spaces of its noncompact subgroup SOo(3, 1), 
formally written as3 

Jf"(m,s, + ) = ~ I ('" Jf"(lu,v)(l(/ + v2
) dv 

(21T) '0 Jo 
gives, in the case of the principal series, the decomposition 

formula for a VIR of SOo(4, I) with respect to VIR's of 

SOo(3, 1), first obtained by Strom using the quaternion ma­

trix description of SOo(4, 1).4 Our method is, in contrast to 
Strom's, based on the description of 0(4, I) by projective 
transformations of T/ (T3 denotes the mass hyperboloid of 
the momentum space of Minkowski spacetime, i.e., 
T3 = ! P" I PI'P' = m 2 j). Since we realize the principal series 
VIR's of SOo(4,I) in terms of the standard VIR's of.9 used 
to describe elementary particles, this makes the physical 

content immediate. In fact, this realization of SOo(4, I) 
serves as the basis for a description of the relativistic rotator 
model,6 which has been most extensively developed by 
Bohm. 7 In that model the invariant operator, being m 2 in a 
VIR, is replaced by the first-order Casimir operator of 
SO A (4, I) in the above realization-A is the contraction pa­
rameter used in the contraction of SOo(4, I) into :}'. H 

We have organized the material in this paper in the 
following way. In Sec. II we present a brief resume of the 
groups SOo(4,l), :3', SOo(3,l), and their simply connected 
covering groups and summarize their pertinent irreducible 
unitary representations. Section III describes the realization 
of SOo(4, I) on the momentum space of Minkowski space­
time. Section IV is devoted to description of the orbital part 

of the SOo(4, l) principal series representation constructed 
here. In Sec. V we realize the principal series representations 

of SOo( 4, l) on Jf"(m,s, + ) Ell Jf"(m,s, + ). A lengthy appen­
dix is devoted to the proof of the irreducibility of these repre-
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sentations. Explicit expressions for the SOo(4) basis vectors 
of the representation together with the matrix elements of 
the generators in this basis are obtained. 

Notation: Lower case Roman indices, in general, range 
from 1,2,3 or 0, 1,2,3,5,6 and Greek ones from 0, 1,2,3. 
1JI'1' = diag (1, - 1, - 1, - 1) denotes the metric tensor of 
Minkowski space, M 3,lJ and gab = diag (1, - 1, - 1, - 1, 
- 1, + 1) is the metric tensor of a (4 + 2 )-dimensional pseu­

do-Euclidean space, M 4,2.1Jab = diag (1, - 1, - 1, - 1, 
- 1) will be used to denote the metric tensor of a (4 + 1)­

dimensional Minkowski space M 4,1' The translation genera­
tors are denoted by a contravariant 4-vector operator PI' 
= (EOP, POP) and the contravariant 4-momentum vector is, 

likewise, pI' = (E,p). The position operator in the momen­
tum representation is given by QI' = - ialapl' = - (ial 
aE, (l/i) Vp ) and transforms as a contravariant 4-vector. It 
follows that 

( 1) 

are the relativistic Heisenberg canonical commutation rela­
tions. Throughout, both Ii and c are set equal to 1. When we 
mean a contraction of two vectors in Euclidean or pseudo­
Euclidean space, we denote it by $1' if (summation conven­
tion). Finally, t denotes the complex conjugate transpose 
and * signifies the complex conjugate. 

II. RESUME OF SOo(4,1), 9 AND SOo(3,1) AND THE 
PERTINENT UNITARY IRREDUCIBLE 
REPRESENTATIONS OF THEIR SIMPLY CONNECTED 
COVERING GROUPS 

We denote by O( p,q) the group of all homogeneous lin­
ear transformations of real (p + q)-dimensional space which 
leave invariant the quadratic form 

-xi -x~ - ... -x~ +X~+I + ... +X~+q. (2) 

By SOo(p,q) we denote the component ofO(p,q) connected 
to the identity transformation. The Lie algebra ofSOo( p,q) is 
written as sol p,q). 

The isomorphism B2 zC/ entails the local isomor­
phism SOo(4,I)zSp(I,I).IO Since Sp(I,I) = V(2,2)nSp(4,C)\O 
is simply connected, this Lie algebra isomorphism permits a 

description of SOo(4, 1) by 2 X 2 quaternion matrices, used in 
Ref. 4. The Hermitian generators Aab of the Lie algebra 
so(n,l) obey the commutation relations 

[Aab' A cd ] = - i(1JacA bd + 1JbdA ac - 1JbcAad - 1JadAbc) (3) 

(a,b = 0,1,2,3,5). 

[For SO(n + 1) replace 1Jac by - Sac; we need this result in 
the Appendix.] AI'1' generate the homogeneous Lorentz 
group SOo(3,1) whose commutation relations are 

[Al'v' Apu] = -i(1Jl'pA"u +1JvuAI'P -1JVpAI'CT -1Jl'uA"p)' 

and A 51' form a Lorentz vector operator 

[AI'1" A5p] = i(1JvpA s1' -1Jl'pA s"), 

satisfying 

[A51" A51'] = iAl'1" 

We call A 51' the generators ofthe de Sitter boosts. I I 
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(4) 

(5) 

(6) 

The covering group of the Lorentz subgroup SOo(3,1) is 
isomorphic to the set of all unimodular complex matrices in 
two dimensions: SL(2,C). The restricted Poincare group 9 
is the semidirect product ofSOo(3,1) with the four-dimen­
sional translation group T4 : 9 = SOo(3,I)ElT4' Vsing the 
well-known isomorphism ofSOo( 3,1) with SL(2,C ) 12 and the 
characterization of four-dimensional vectors by Hermitian 
matrices in two dimensions gives the isomorphism 
fJj ~SL(2,C )ElT4. 13 The Hermitian generators of fJj are PI' 
and Lw with the commutation relations 

[PI',Pv ] = 0, 

[LI'1"Pp ] = i(1Jvp PI' -1Jvp P,,), 

(7) 

(8) 

the commutation relations of the generators LI''' of SOo(3, 1) 
being the same as in (4). 

SOot 4,1) has two independent Casimir operators for 
which we take 

QI = - !AabA ab (a,b,c,d,e = 0,1,2,3,5), 

Q2 = - wa wa, Wa = i EabcdeA bCA de. 

(9) 

(10) 

The two independent Casimir operators of the Lorentz sub­
group will be denoted by Q~O(3.1) and Q~OI3.J). Q~OI3.1) is the 

same as its counterpart, Eq. (9) above, except Roman indices 
are replaced by Latin ones, and Q ~OI3,1) = WS' Invariant op­
erators of 9 are PI'PI' and W = - wI' wI', wI' 
= !EI'1'pupvLPu. 

For SOo(3,1) and SOo(4,1), the values of the two inde­
pendent Casimir operators can serve to label the VIR's.8 
Besides the values of the two above invariant operators, an 
additional label is necessary to describe the VIR's of '& , 
namely the sign of the energy, Po. The VIR's of the Lorentz 
group are labeled by the numbers (ko,c) with ko a nonnegative 
integer or semi-integer and c purely imaginary, c = - ip 
(the principal series) or ko = 0, O,;;;;c,;;;; 1 (the supplementary 
series). 14 The relation between c, ko and the two Casimir 

operators of SOo(3,1) is in an irreducible representation: 

Q~O(3,1) = (1 _ c2 _ k ~)1, Q~OI3.1) = 2ikoe1. (11) 

The finite-dimensional spinor representations of SOo(3, 1) 
have c real with c2 = (ko + n)2 and have dimensions c2 

- k ~. 
The VIR's of fJj were found by Wigner. 13 The ones relevant 
to our discussion are 

m ±: m 2 >0, Po~O, s = O,!,I, .... (12) 

In a VIR the invariant operators are 

PI'PI' = m 21, W = m 2s(s + 1)1. (13) 

The VIR's ofSO(4,1) were first determined by Thomasls 

based on the infinitesimal method. The classification was 
completed by Newton and Dixmier.16 We are only con­
cerned with the principal series representations (VIR's) 

(p,r): p2>0, r=O,p, ... , (14) 

for which the Casimir operators take the following values 17: 

QI =p2 + ~ _ r(r+ 1), 

Q2 = r(r + l)(p2 + 1). 
(15) 

(16) 

In the following we denote the various VIR's by the corre-
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sponding set of numbers labeling them, e.g., (m,s, + ) for & 
or (p,r) for SOo(4,1). 

III. A REALIZATION OF SOo(4,1) AS PROJECTIVE 
TRANSFORMATIONS OF THE MASS HYPERBOLOID OF 
THE MOMENTUM SPACE TO MINKOWSKI SPACE-TIME 

In this section we give the geometrical description of 
SOo(4,1), which we used to obtain our construction of the 
principal series irreducible representations. First we present 
the Klein description of the conformal group 0(4,2). IX.19 
Imbed M 3•1 into M 4•1 as the hyperplane IS = ° (see Fig. 1). 
Consider the paraboloid 

IS = + I02 _ I,2 _ 122 _ 132. (17) 

Introducehomogeneouscoordinates(tO,t I,t 2,t 3,t S,t 6)by 

IS = t S/t 6, III = tll/t6 (IL = 0,1,2,3). (18) 

Then (17) becomes 

t St 6 = +t02 _t 12 _t 22 _t 32. 

Since 

tSr = l(t S + t 6)2 -l(t S - t 6f, 
we have that (19) becomes 

fl (t) = l(t S + t 6)2 -l(t S 
- t 6)2 - t02 + t 12 

+ t 22 + t 3
2 

= 0. 

(19) 

(20) 

The linear transformations of M 4,2 which leave invariant the 
above form is 0(4,2). 

The general transformation of the Ill's (IL = 0,1,2,3) 
induced by BESO(4,2) is 

where 

B= 

b 6
6 b 6

s b\ b 6
2 

b S
6 b\ b\ b S

2 
b l

6 b l
s b l

l b l
2 

b 2
6 b 2

S b 2
1 b 2

2 

b 63 
b S 

3 

b 13 

b 23 

b 60 

b 50 

b 10 

b 20 

b 3
6 b 3

S b\ b 3
2 b 3

3 b 3
0 

b 0
6 bOs bOI b02 b03 bOo 

E 0(4,2). 

It is easy to show that every transformation of the form (21) 
can be obtained as a product of an inversion, til' = til/It 1

2
, 

a scale transformation, til' = /Ltll, and a Minkowskian mo­
tion, til' = Oil vt v + all, from which it follows by an exten­
sion of Liouville's theorem to M 3,I that 0(4,2) corresponds 
to the conformal transformations on M 3,I .20 

(e5,~I-') 

------~==~~--~--el-' 

FIG. I. Projection of paraboloid in M." onto M 3,1' 
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Next we describe a subgroup of 0(4,2) which leaves in­
variant the hyperboloid nO) = IIIlE M 3,I IIIlIIl = IJ. 

We determine it as follows: 

T~O) invariant means I ~Iw = IIlIIl and because 
IS = IIlI Il we demand that t s - t 6 remain invariant. Since 
0(4,2) leaves invariant 

!(t 5 + t 6)2 _ !(t 5 
_ t 6

)2 _ t02 + t 12 + t22 + t32
, 

we see that the subgroup of the conformal transformations 
which leaves T~O) invariant is the group oflinear transforma­
tions of M 4•1 , which preserves 

fl'(t)=!(t 5 +t 6)2_t0
2 
+t12 +t22 +t3

2
. (22) 

The component of this group which is connected to the iden­
tity is SOo(4,1). 

Now letA be an element of this SOo(4, 1). Referred to the 
coordinates !(t 5 + t 6), !(t 5 - t 6), til, its matrix is given by 

a6
6 a6

1 a6
2 a6 

3 a6 

° a l
6 a l 

1 a l 
2 a l 

3 aID 

A= a2
6 a2 

I a2 
2 a2 

3 a2
0 , (23) 

a3 
6 a3 

I a3 
2 a3 

3 a3
0 

aD 
6 aO 

1 aO 
2 

aD 
3 aDo 

and its action on the coordinates is 
3 

t 5 = !(t 5
, + t 6

,) = a6
6 !(t 5 + t 6) + L a6

vtv, 
v=o 

(24) 
3 

til' = all6 !(t 5 + r) + L allvtv. 
j~D 

Thus on V3•1 (the I Il space), the transformation induced by A 
is 

!(a6
6 - l)t 5 + !(a6

6 + l)t 6 + ~a6 vt v 

all6 !(I2 + 1) + ~allvlv 
!(a6

6 - l)t 2 + !(a6
6 + 1) + ~a6vtv 

For I IlEnO) (that is to say, til a point on the hyperboloid) we 
have 

/i.;JIl_IIl':Iw = (a1l
6 + L allvI',)!(a6

6 + Ia 6
v t V

). 

(25) 

The Jacobian of this transformation (restricted to T~O)) isIS 

(26) 

The denominator of this expression may vanish for certain 
transformations. This means that in order to consider the 
action of SO(4, 1) on T~O) we must first compactify it by the 
adjunction of a surface at infinity. The measure on T~O) trans­
forms in the following way under A 21: 

(27) 
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provided, of course, that the denominator does not vanish. 
Therefore, we have for IC[') and gf't') L 2 functions on T ~o) 

r ]f't'IgC[')dflT\ol' 
JT\OI 

= r ](A(I)) g(A(I)) dfl 101 

JT\OI [a66+~a6vsv]3/2 [a65+~a5vsV]3/2 TJ 

(28) 

with A (I) given by (25). HeredflTlol = 8 (I2 - 1) d4smeans 
3 

{

dflTJ+IOI = 8(I2 - 1)0 (IO) d 4 I, IO>o, 

dflT'f I = dflT,_lol=8(I2-1j[1-0(IO)] d 4 I, IO<o. 

(29) 

[T / denotes the upper sheet (IO > 0) of the hyperboloid, T3 , 

and T 3- denotes the lower sheet (IO < 0).] 

IV. THE CONSTRUCTION OF THE ORBITAL PART OF 
THE PRINCIPAL SERIES REPRESENTATIONS OF 
SOo( 4,1) on jy(m,s, + ) fB jy(m,s, + ) 

After this geometric groundwork we turn to the con­
struction of the (p,s) ofSOo(4, 1) on unitary irreducible repre­
sentation spaces of 9. 

First we describe a continuous representation of (p,O) 
on g2(T~). GivenAESOo(4,1) and/Eg2(T~), let 

TA - = I(A- I
[) 

(p/)(s) la66(A -I) + ~l"a61"(A -1)sI"1 3/2+ip (30) 

(1) The Lorentz rotations: 

:'. 0 ',.-1 

o 

0··· 

o 

with 

(31) 

extended to include points at infinity. 
The representation property 

(32) 

is satisfied because of the multiplicative property of Jaco­
bians 18 and unitarity is assured because of (28). 

To obtain representation of SOo(4,1) which acts on 
g2(T3) we introduce a constant m (which we identify with 
the mass in a UIR of 9), and define new variables p I" by 
5 I" = P I" 1m. Then (30) and (31) define a unitary representa­
tion of SOo(4, 1) on g2(T3)' where T3 = ! pili PI" pIl = m2), 
by replacing ~ in these equations everywhere by p I" 1m and 
then redefining I as the original I composed with the func­
tion which corresponds to multiplication by m, i.e., I-Ioim , 

where im is the function of multiplication by m. 
The proof of the irreducibility of this representation, 

which is based on the proof presented in Refs. 18 and 19, is 
given in Appendix A. 

It is instructive at this point to compute the action of the 
infinitesimal generators ofSOo(4,1) on g2(T3)' We take the 
following expressions for the matrices of the generators of 
the rotations in the various planes of projective space: 

(33) 

o 
(i,j = 1,2,3 and in lij the 1 is in the ith row,jth column, and the - 1 is in thejth row, ith column with i < j). 

(2) The de Sitter boosts: 

1 5i = 

0· .. -1 0 0 

o 

o o 

1 5°= -, 

Let us define the linear operator UO(A ) in g2(T3) by 

1"")= UO(A)I"'), 
(35) 

""(p) = (pi"") = (pIUO(A )1"') = (T:",)(p), 

where UO(A) has matrix elements 

(pIUO(A)1 p') = (T:p')(p) 

1 I' 183(A - I _ ') 
Ip(A, p) 13/2 + ip Po P p 

[lp(A, p)1 312 + ip is the multiplier in (30)]. For an infinitesimal 
rotation 

A =1 +wfOb 
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o (34) 

o 

in thea-b plane of projective space, UO(A ) can be written as: 

U(Q)(A ) = 1- iwMablOI. (36) 

Using this equation along with (30) and (35), we explicitly 
obtain, by expanding (T:",)( p) in a Taylor series in wand 
keeping only terms of order w, the following expressions for 
the infinitesimal generators M ~06 : 

M~~ = (QI"Pv - QvPI").1 = Ml"v.1, 

MLO) 
51" 

P. Moylan 
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I=(~ ~), IA,B] =AB +BA, 

where 5 is defined in Eq. (24) and I comes from the following: 
'y2(T3)~ 'y2(T 3+) G) 'y2(T 3~) as Hilbert spaces, and a vec­
tor 1¢')E'y2(T3) may be written as 

with 

l¢'dE'y2(T 3+)' 1¢'2)E,Y2(T 3~)' 

The infinitesimal operators Mab may beformally written as 
the direct sum of the operators QpPv - QvPp and - (1/ 
A )B ~), where each of operators acts on dense subspaces of 
'y2(T 3+) and 'y2(T 3~) in the usual way. We can verify that 
expressions (37) satisfy (4), (5), and (6), and so they are restric­
tions of essentially self-adjoint generators of the representa­
tion. The general form of the UO(A ) is 

UO(A ) = e ~ iw"bM~612. 

V. THE CONSTRUCTION OF THE PRINCIPAL SERIES 
REPRESENTATION (~/A.2,s) OF SOo(4,1) ON 
2'(m,s, + ) G) 2'(m,s, + ) 

In order to proceed with the construction, we find it 
necessary to describe a well-known realization of the UIR's 
of 9 in terms of wave functions ¢,(p;S''''S2s) withp E T3 and 
which are totally symmetric in their 2s four-valued variables 

Sn,,·S2s· 2 First let 'y2(T3) ® Ctl) ® C~) ® ". ® C~S) be the 
tensor product of Hilbert spaces, where C~) is the ith copy of 
C 4

, a four-dimensional vector space over C. Next, introduce 
the generalized basis I p) ® eS1 ® eS2 ® ", ® eS2.' The compon­
ents of a vector ¢' with respect to this basis are denoted by 
¢'( p; SI,,,S2.)' Let yls) denote the space of all such ¢' which 
are symmetric in their 2s variables SI"'S2s' Now for every 
k = I, ... ,2s define a set offour matrices r~i' being four of the 
4 X 4 matrices22 of the generators of the Clifford algebra S223 

which satisfy 

I rlvk) ,r!~d = 217it/)k l' (38) 

[The rl~)'s act on the space C~) in the usual way, so that 

¢,'(P;SI'''Sk'''S2s) = L (rl~))Mk ¢'(p;s; "'S ,,"'S ~s)], 
Sk 

Next introduce the matrices24 

2s 1 2s 

r p 
= L r'V<) = - L rl~)' (39) 

k=1 2 k=1 

These lead to the generalized Dirac equation24 

(rPpp - sm)¢, = O. (40) 

Consider the set of all !fEYIS) which satisfy the Bargmann­
Wigner equations 

(rtk)pp - m)¢' = 0 (k = I, .. ,,2s). (41) 

Denote the space of all these ¢' by "a:JIs)", We can define in 
",en Is)" the following inner product: for every ¢,E",enls)" 

(¢',¢') = L31~ ¢'*~ r'i"'r'is¢'1 dfl (42) 

[the inner product is obtained from this norm by polariza­
tion; we denote it also by ( , )), 
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where ¢'* is the Hermitian conjugate of the vector If. Let ,enIS) 
be the Hilbert space completion of the set of all !fE" ,en Is) " for 
which the inner product defined by (42) is finite. As shown in 
Ref. 2, ,enls) , for every s, is the carrier space of a unitary 
representation of the restricted Poincare group 9 with in­
variant inner product defined via (42) and which has the 
following decomposition into irreducible representations: 

,en!s) = JY'(m,s, + ) G) JY'(m,s, - ). (43) 

A basis in which this decomposition is accomplished is the 
unitary canonical basis of vectors I PS3E) k = sgn(po)).13 

The relation of the Bargmann-Wigner wavefunctions 
¢'( p;s ) to the canonical basic vectors is obtained through the 
spin or form of the representation of 9. Introduce the non­
orthogonal spinor basis defined by25 

( - 1)' -A I p, - A;E) = I p, ~;E) = L I PS3E)fii~3A (L (p)) 
SJ 

and 

( - l)S+A I p, - ~;E) = I p, A;E) = L I PS3E)fii~;A (EL ~ I(p)) 
.53 

(A =s,s-I, ... , -s) 

I p, ~;EI¢)* = (¢ I p~;E) ;(¢ I p, A;E) = [p, A;EI¢ )*, (44) 

where fii~3A (L (p)) is the representation of the inverse boost 
L (p), takingpp to rest, in the (2s + I)-dimensional irreduci­

ble representation space of SOo(3,I) (see Ref. 13). 
The transformation law for the components of a vector 

¢ in the canonical basis is2 

(ps31U(A,a)¢) = e,a"p~ L fii~3S; (R (A, A -lp))(A ~ Ip,si I¢), 
s; 

where U(A,a) is the unitary operator corresponding to the 
Poincare transformation p'P = A ~pv + aI<, and R (A, 
A ~Ip) =L(p)AL ~'(A -'p)istheWignerrotation.Wehave 
for the transformation law of the components of ¢ in the 
spin or basis25 : 

(45) 

[ p, A;EI U (A,a)¢ ) = eiP~~ fii],,!! (A H A ~ Ip,B;EI¢ ). 

We state the following momentum representation form of 
the Bargmann-Wigner equations in spinor notation25

,26: 

[ p,A;EI¢ ) = p'JiJ I p,B;EI¢ ); I p,B;EI¢ ) = p';.~ [ p,A;EI¢) (46) 
- -- BA -

with 

(47) 

Up to a possible unitary transformation of the Hilbert space 
which does not affect the p variable, the components of the 
vector ¢E,enls) in the spinor basis, 

_1 (I p, 1;EI¢ )) 25 
v2 I p,B;EI¢) , 

can be identified with the Bargmann-Wigner function 
¢ (p;S'''"S2s)' They have the same transformation laws (45). 
Also, the infinitesimal generators of the representation of 9 
acting on the Bargmann-Wigner ¢ (p,S'''',S2s) are2 
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with SJ1.V defined by 

i 
SJ1.V = I SJ1.'ik) = -4 I [Ylk)~'Ylk)v] (Y(k)" = 7]J1.vYlk))· 

k k 

(48) 

These relations are simple consequences of the transforma­
tion law of the components of <P in the spinor basis [see Eq. 
(45)]. 

In the realization of the representation of &' on 
JY'(m,s, ±), the norm (42) corresponds to the following: 

We readily verify, using (38), (39), and (48), that the FJ1. 
and SJ1.V satisfy the commutation relations of the generators 

for a representation of SOo(3,2)r".s"v' With the replacement 
FJ1.- - iFJ1. in (39), we obtain a representation of 

SOo(4, 1) _ iT S ,which is, in general, defined in 
~~. / . .0' 

2'2(T3)®Ctl) ®C~) ® ... ®C~s)' 
Now we define a mapping U from SOo(4,1) into the set 

of all linear operators on 2'2(T3) ® Ctll ® ••• ® C~sl by 

¢'(p;S; "'S ~s) 
= [U (A )¢]( p;S ; "'S ~s) 
= (p;S; "'S ~s I~(A )UO(A )I¢) 

4 

= I exp[ - il!uI"V(SJ1.V) + iwP(Fpll.;;.;,] 
.;'···.;2,= I 

X (Ttp,s) ¢)(P;SI"'S2s) 
4 

I ~(l)';''; (A )~12)';·'; (A )"'~12S),;',4 (A) 
51."525 = 1 1 I 2 2 2 2s 

X (Ttp,S)¢)(P;SI"'S2S) (wP=WSp), (50) 
where 

(T~p,s) ¢)( P;SI'''S2s) 

1 "'(mA -lplm.J:- . ..E:- ) 
1,u(A;plm)1 3/2 -s+ ip If' '~I ~2s' 

(1,u(A;plm) 1 = la6
6(A -I) + I a6J1.(A -1)pJ1.lml), (51) 

~1i)S;Si(A ) = exp [ - i(!wIl-''SJ1.vlil + iwPFpii))S;Si]' 

We see from (50) that every permutation of the indices 
S ; "'S ~s may be obtained by the same permutation of the 
factors ~ 111515, (A )'''''~12S)'; ;,-52, (A) of (50) and the indices 

SI'''S2s in ¢(P;SI'''S2s!' Therefore, if¢(p;S,'''S2s) is symmet­
ric under the interchange of the Si 's then so is ¢'( p;S; "'S ~s). 
Thus the representation can be considered as a representa­
tion in .9'lsl. 

On 9?il121 the following operator identity is valid27: 

iFJ1. = - (lI2mj[PP,SpJ1. J + (iI2m)pw 

Using (41), together with (39) and (48), we can obtain a gener­
alization on gpls) 
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iFf' = - (lI2mj[PP,SpJ1. J + i[(2s)l2mJPJ1. 

= - (lIA. )Bt) + i[(2s)l2mJPw (52) 

(40) is an immediate consequence of (52). We will use this 
result shortly. 

Now we determine the form of an SOot 4,1) transforma­

tion which leaves (41) invariant: for AE SOo(4,1) let U(A) be 
the operator defined by 

(53) 

where S (p, A ) affects only the Si variables, but may depend 
upon p, and T~p,s) ¢( p,S;) is defined by (51), 

For A a de Sitter transformation we have 

(54) 

with A as in (31). The invariance of the Bargmann-Wigner 
equations means28 

(55) 

with 

¢'(p';S) = UtA )¢(pI) (56) 

as in (53). Using (54) and (56), we see that (55) is true if S 
satisfies 

mS(p,A {A -I(~)r Ylk)~S-I(p,A) = PJ1.Y(k)" , (57) 

For A an element of the Lorentz subgroup, the deter­
mination of the S (A ) which satisfy (57) is obtained by first 
noting that a solution of (57) for transformations involving 
only the p, Sk variables (k fixed) is achieved by the usual 
choice of the spino! Dirac theory case29: 

Urk)(A )¢(P;SI'''Sk'''S2s) 

= I exp [ - ~iul"V(SJ1.vlk) )5k'; k ] ¢(A -lp;S; "'S Ie "'S ~s) 
5A 

(58) 

so that if we let UtA ) be the operator (50) with 

~ii)(A ) = exp( - !iwll-vSJ1.'ii))' 

then in variance of each of the equations of (41) is assured. 
Using (50) and the fact that the SJ1.'ik) 's for different k 's com­
mute with each other, we can rewrite (50) for this A as 

UtA )¢(P;SI'''S2s) 
4 

I exp( - !il wIl-VSJ1.V J ';,4 ;l¢(A -lp;S; "'S ~s), 
.;1 .. ·.;;,= I 

(59) 

Now consider an infinitesimal de Sitter boostS (A ) in the 
5-i plane. Let SSi denote the infinitesimal generator S (A ), so 
that S (A ) ~ 1 - iWSiSSi ' Using this along with (31), we obtain 
from (57) 

[PJ1.Y(k)",SSi] = - i[ (lIm)Pi y(;:),PJ1. - mYlk)i]' (60) 

Because of (52) a solution to this equation is provided by 
+ iFi restricted to a*). In a similar manner we may estab­
lish for an infinitesimal de Sitter boost in the 5--0 plane that 
Sso = + iFo on gpls) is a sufficient condition for invariance 
of (41). Using (50) and this result, we see that a sufficient 
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condition for the invariance of the Bargmann-Wigner equa­
tion (41) under infinitesimal de Sitter boosts is 

UtA )¢(P;SI"'S2s) 
4 

I exp( - i(uf'( + iFl")lu;lT~p.sl(p;s; "'S~) 
s ""s;, ~ I 

(61) 

with wI" = w5
1". By addition and compounding oftransfor­

mat ions, we may establish that the desired form of the 

SOo(4, 1) transformation on ~IS) is identical to the operator 
(50) in the space ~ISI. 

Next we make the following definition30: 
Definition: A unitary irreducible representation U of a 

Lie group ® on a Hilbert space ~ is the range of a function U 
from ® into the space of all bounded linear operators on ~ 
satisfying 

(i) To every AE® corresponds a unitary operator U (A ) on 
~; 

(ii) for any two elements A I' A2E®, 
U(A2)U(AI) = U(A~I); 

(iii) if the sequence AnE® converges toA, then U(An)¢ 
-+U (A )¢ for every ¢E~; 

(iv) no proper closed linear subspace of ~ is invariant 
with respect to all the U (A )'s (irreducibility). 

With this definition we can prove that (50) defines an irredu­

cible unitary representation of SOo(4, 1) on ~(SI. The linear­
ity of U(A) is obvious from (50). The homomorphism condi­
tion (ii) follows from the multiplication property of the 
multipliers 

f.leA 2- I;P)f.l(A I-I;(A 2- lp)) =f.l(( A~d-I;p) (62) 

so that from (50) and this equation 

(U (A 2l( U (A d¢)l( P;SI'''S2s) 

= I g; s,!; ;(A2 ·A I)T I~~~~I( P;S ~ ···s;s) 
s; 

= U(A2·A I)¢(P;SI·"S2s)' (63) 

using the representation property of the S (A )'S. Continuity 
[(iii)] is verified by checking that (iii) is satisfied for arbitrary 
matrix elements31 : An -+A implies (¢, UtA n )¢)-+(¢, U (A )¢) as 
complex numbers for any ¢, ¢E~IS). Using the definition (42) 
of the inner product, we see that this "matrix element" con­
vergence is clear from the form (50) of the representation 
along with the fact that g;(A'P)n(T~p.s)¢) (p,S) is acon~n­
uous function of the group parameters, Wab (recall that T~p.s) 
is a continuous representation). We consider the notion of 

the convergence of sequences in SOo(4, 1) associated with 
the topology on this group which is obtained by viewing 

SOo(4, 1) as a surface embedded in R n
2

32; for the conver­
gence of sequences in C we mean with respect to its usual 
topology. 

We now compute the infinitesimal generators of the re­
presentation. Observe that because of (43) ¢ can be written as 

(64) 

with ¢1E2(m,s, + ) and ¢2E2(m,s, - ). We have 
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(¢,¢) = (¢I'¢I)+ + (¢2'¢2)-' 

where ( , ) + and ( , ) _ are the inner product on ~Is) re­
stricted to JY'(m,s, + ) and JY'(m,s, - ), respectively. A gen­
eralized basis for JY'(m,s, + ) consists of the vectors I PS3 + ); 
and I ps 3 - ) is a generalized orthonormal basis for 
JY'(m,s, - ), where the I PS3 ± ) are the canonical basis vec­
tors. Elements of JY'(m,s, - ) in ~Isl correspond to vectors ¢ 
with ¢2 = a and elements of JY'(m,s, - ) in ~Is) are vectors ¢ 
with ¢I = O. LetA be an infinitesimal transformation; then, 
using (50), 

UtA ) = 1 - iwabLab , 

with 

Ll"v = Ml"v'/ + SI"V 

and 

_~(BIOI./+BIS))= -~B ./ 
A I" I" AI" 

being the generators of the representation. 
Next we claim 

(65) 

(66) 

(67) 

for any ¢in the domain of Lab' The polarization identity (42) 
and the unitarity of T~ as defined in (30) and (52) show that 
(67) amounts to verifying 

((1 + iESl"v)¢,(l + iESl"v)¢) = (¢,¢) + o (E2), 
(68) 

((1 + iE(l/A )Btl)¢,(l + iE(l/A )Btl)¢) = (¢,¢) + o (E2). 

The first equation can be checked by observing that if both 
a,b = 1,2,3, then SI"V is a Hermitian matrix and commutes 
with IT7~ 171. If either a or b is a and the other 1, 2, 3, Sab is a 
skew Hermitian, but it anticommutes with IT7~ 171. These 
same arguments together with the Hermiticity of PI" suffice 
to prove the second equation. 

N ow we show the U (A )'S are bounded operators on ~Isi. 
This is easiest to see by introducing the following inner pro-· 
duct on ~Is), which is equivalent to (42f 

(¢,¢) = 1 dfl T,lm/poI 2S II(¢,¢W [I(¢,¢W=¢+¢]· 
~ s (~) 

Any A can always be written as the product of rotations in 
the various a-b planes of projective space. 33 Therefore, it 
suffices to prove boundedness for the operators of rotations 
in the a-b planes. For a, b = 0,1,2,3 the proof is immediate, 
since they are just representatives of Lorentz rotations which 
are even unitary. For a de Sitter boost in any of the 5-f.l 
planes we have according to (69) and (50) 

I!U(A )¢II<{~~x g; ab(A)} IIT~p.s)¢11 [11.11 = (.,)1/2] 

(70) 

since g; ab (A ) is just a finite-dimensional matrix. Therefore, 
we must show II T~p,sl ¢II < k II¢!! for any ¢E~IS). This is done 
in Appendix B. Thus the operators of the representation are 
bounded ones. Since the representation U consists of bound­
ed operators, we know that 
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SD = _n_SD(U*(q)) 
geSOol4,J) 

is dense in ,g~*). [U*(q) = - ~UJabLab and SD(A ) stands for the 
domain of an operator A.] Therefore, all ofthe operators of 
the Lie algebra U * (g) are symmetric operators in .~)(S), and we 
have a symmetric representation of the Lie algebra of 
SOo(4, 1) on the Giirding subspace of SD.34 

We will now show that the representation of the one­
parameter groups of rotations in the a-b planes of projective 
space are uniformly bounded. Afamily of operators U (t ), tER, 
is said to be uniformly bounded on a Hilbert space ~ if there 
exists a constant K > 0, independent of t, such that 
II U (t )¢'II <KII¢'II for all tER. It is clear that the unitary one­
parameter generators of the Lorentz rotations are uniformly 
bounded. For boosts in the 5-i planes of projective space we 
know that the ~ (A )'s are all products of matrices having sine 
and cosine or hyperbolic sine and cosine functions as entries 
and their arguments are restricted to finite intervals. There­
fore, all of the maxa,b I ~ ab (A ) I are bounded by some real 
positive number. Combining this with (70) and (Bl) shows 
that each one-parameter family of boosts in the 5-i plane of 
projective space is uniformly bounded. For the one-param­
eter family of boosts in the 5-0 plane of projective space, 
each ~ (A ) = e - Ira satisfies 

max l~ab(A )1 <es
'. 

a,b 

[Use (39) and-for simplicity-<:hoose a representation in 
which ro is diagonal.] Using (70), (B2), and this result, we 
obtain 

IIU(A )¢'II<este-sllI¢'1I = II¢'II 
for all t. Thus each of the one-parameter groups is represent­
ed by a uniformly bounded family of operators. 

We have the following theorem whose proof is similar 
to the proof of Stone's theorem35: 

Theorem: Let U (t ) be a strongly continuous, uniformly 
bounded one-parameter group of linear transformations on 
a Hilbert space ~ such that the infinitesimal generator A of 
U(t )isasymmetricoperatoron~. Then U(t )isaone-param­
eter group of unitary transformations on S). 

Proof First, A is defined as that operator such that 

for ¢' E SD(A), iA¢' = lim U(t)¢' - ¢'. 
1-+0 t 

In order to establish the theorem, we use the basic criterion 
for self-adjointness, namely, that A +¢' = ± i¢' can have no 
solutions in ~. 35 Suppose there is a ¢' E SD(A +) so that 
A + ¢' = i¢'. Then, for each ¢ E SD(A), 

~ (U (t )¢,¢,) = (iA U (t )¢,¢,) 
dt 

= -i(U(t)¢,A +¢') 
= - i(U(t)¢,i¢') 

= (U (t )¢,¢,). 

The complex-valued function f(t) = (U (t )¢,¢'l satisfies the 
ordinary differential equation/' = f Its solution is 
fIt) =f(O)e'.SinceU(t)isuniformlybounded,IIU(t)¢ II <K,SO 

I f(t)1 < IIU(t)¢ II II¢'II <KII¢'II (by Schwartz's inequality), which 
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implies thatf(O) = (¢,¢,) = O. Because SD(A ) is dense in S), 
¢' = O. Likewise we may show A + ¢' = - i¢' has no solutions 
in~. Therefore, A is essentially self-adjoint on s)(A ). But then 
by the converse of Stone's theorem,35 for each tER, 
U (t ) = ea, is a strongly continuous unitary operator (A is the 
self-adjoint closure of A ). Since U (t land U (t ) agree on a dense 
domain and are both bounded, they must be equal. QED 

For each one-parameter group of rotations in the a-b 
plane, let Udt ) denote the representative determined by (51). 
It satisfies the hypotheses of the theorem, so it is a one-pa­
rameter unitary group. Any U (A ) can be written as a product 
of the Udt )'s, and the reader can easily convince himself that 
the product of unitary operators is unitary. This proves con­
dition (i). Irreducibility can be proven by demonstrating the 
unitary equivalence of this representation with another one 
which is shown to be irreducible. We do this in Appendix A. 

If we choose 

p = ~m2/A 2 (71) 

in (37), we obtain for the (lIA) BJ.l 's in (66) 

(lIA)BJ.l = (lIA)[PJ.l +(A12mHPP,LpJ]. (72) 

From this we conclude that the infinitesimal generators act­

ing on an arbitrary vector ¢' = (~~) in .~')(s), which is in their 
common invariant domain, may be written as the matrix 
operators 

LJ.lvXI, 

- (lIA )BJ.l XI, 
(73) 

where LJ.lv and BJ.l are given by (65) and (72), respectively. 
From (73) it seems that the subspaces JY'(m,s, + ) and 

JY'(m,s, - ) are invariant under the entire group (exponen­
tiate). This is not so! We show in the appendix that the 

-iaJl(I/.-t)BI • ~ d 1 W?( ) W? e ' ,10 lact, 0 not eave O"l m,s, + and O"l (m,s, - ) 
invariant. 36 

Finally we shall carry this representation of SOo(4,1) 
over into ~(si = JY'(m,s, + ) Gl JY'(m,s, + ). For this purpose 
we introduce the linear operator O:&l(s)--+~(s) defined by its 
action on the canonical basis: 

(74) 

This mapping is readily demonstrated to be unitary as an 
operator from &l(s) to ~(s). From (74) it follows that 

P = 0 J.l 0-1 = J.l - (P 0) (P 
J.l 0 PJ.l 0 

(75) 

The form of the generators of the Lorentz subgroup acting 
on wave functions ¢ (PS3; ±) = (PS3; ± I¢) are given by3? 

Ljk = - i(Pj ~-Pk~) +Sjk' 
JPk JPj 

LOi = Ni = - ip o JJ - [(PXS);Ip o + €m] 
'Pi 

(Si = €ijkSjd· 

From these equations and (74) it follows that 

LJ.lv = 0 (LJ.lv 0 ) 0 -I = (LJ.lv 0 ). 
o LJ.lv 0 LJ.lv 

(76) 
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Using (72), 

..lE =O..l(BI' 
A I' A 0 

Because of the unitarity of 0, the representation U (A ) of 
SOo(4, 1) on giIlls) and V (A ) = OU (A )0 -Ion gpls) are 
equivalent. 

Using (76) and (77) for Il'v and EI" we will find the 
following expressions for the Casimir operators (9) and (10) 
ofSOo(4,1) on gpls): 

A 2Q I = [m 2 + ~,.1, 2 - A 2S(S + 1) J .J, 

A 2Q2 = [(m 2 +!,.1, 2)S(S + III .J. 

(78) 

(79) 

A comparison of these equations with (15) and (16] shows 
that the irreducible representation which we have construct­
ed is 

(~m2/,.1,2,s). 

We have thus succeeded in proving the integrability of the 

representation of the Lie algebra of SOo(4,1) defined on a 
dense subspace 9J of gpls) and which is generated by (76) and 
(77) with Ll'v and BI' given by (65) and (72), a result first 
conjectured by Bohm.x 

VI. CONCLUSIONS 

We have constructed on gplsj 

= JY(m,s, + ) al JY(m,s, + ) the principal series UIR 

(fiiT;J:L, s) 

of SOo(4, 1); the advantage of using gpls) instead of gill is) is that 
negative energy states are avoided. 

Besides providing a very simple derivation of the princi­

pal series UIR's of SOo(4, 1), the advantage of our method is 
that, at every stage in the construction, the geometrical and 
physical meaning is brought out. For example, (52) gives the 
following interpretation to the Dirac matrices, rl': imrl' 
equals !iPI' minus the "internal" or "spin" part, (1/,.1, )B t), of 
the generators of the de Sitter boosts, on any physical system 
whose states are described by solutions of the Dirac equa­
tion. It also reveals an interesting but little-known SOo(4, 1) 
symmetry of the Dirac equation. The possibility of such a 
symmetry could have been seen from the fact that the SI'V 

and - irl' 's form an SOo(4, 1) _ ir",S"v' Supposing this to be 
the spin part of the symmetry group, the only possible choice 
for the oribtal part of the generators which are linear differ­
ential operators on momentum space are the M~~ and 
M ~~'s( P = 0) up to addition of quantities which commute 
with the Dirac equation. The fulfillment of the conditions for 
a principal series UIR (~ m2 /,.1, 2, s), as given in the definition, 
force us to (50) as the only possibility. The physical meaning 
of the de Sitter boosts is still unclear. 

An interesting question is whether or not our method 
generalizes to an explicit construction for certain UIR's of 
SOo(n,l) and SO(p,q). The generalization to SOo(n,l) would 
consist in replacing T3 by Tn _ I and using higher dimension­
al spin structures. The generalization to sOot p,q) would be 
in replacing T3 by a hyperboloid H( p _ I,g) in Mp _ I,g: 
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H(P_I,g) = [PI' I~r= I (Pi)2 - ~f::(pYJ, and again using a 
different spin structure, that associated with the Clifford al­
gebras, in Mp _ I.g' 23 Also how would our construction com­
pare to other methods of constructing representations of 
SOot p,q), such as those which consider the decomposition of 
the regular representation acting on y2(SOo( p,q)/ 
SOot p,q - 1 ))?38 

Finally we comment on a possible physical conse­
quence of the doubling of states. We may consider a physical 
system, the. relativistic rotator model,6 which consists in re­
placing (PI'PI')I/2 by (A 2Ql)I/2 as the relativistic Hamiltonian 
of an elementary particle, with mass m and spin s. A possible 
complete set of (esa) commuting operators39 for this system 
is 

(A 2Qd l /2, W, L2 + B2, L·B, B3, L 3• 

The space on which these operators act irreducibly cannot be 
JY(m,s, + ) or JY(m,s, - ) because B3 is not essentially self­
adjoint on these spaces. From the results of the preceding 
sections, we see that the Hilbert space can be chosen to be 
JY = JY(m,s, + ) al JY(m,s, + ). As another complete set of 
commuting observables we may take 

PI'PI', W, W3, PI" ~ 

which correspond to the usual observables of an elementary 
particle, together with an operator ~ which distinguishes 
between the two JY(m,s, + )'S. The symmetry group or 

"dynamical group" of this model is SOo(4, 1). It is possible, 
at least for baryons, to identify ~ with the operator of electric 
charge. 7 

The question of the observability of B3 is similar to the 
question of whether a precise description of the zitterbewe­
gung in the Dirac theory of the electron in terms of "micro­
scopic" dynamical variables is possible. The general view­
point is that such an attempt is somewhat irrelevant. For 
when the Dirac equation is being interpreted at the one-par­
ticle level, the only Hermitian operators which can represent 
observable quantities are those which leave invariant the 
spaces of positive and negative energy solutions of the equa­
tion.40 The position operator Xi and the B/s do not satisfy 
this criterion, and so it would seem, according to the general 
view, they are only unobservable mathematical curiosities. 
However, at least for xi> it can be argued that there are obser­
vable effects associated with it.40 For example, it isAI' (x) that 
appears in the formula of minimal substitution when electro­
magnetic interactions are brought in. Also it is Xi together 
with t which form a 4-vector, a fact of great importance in 
any attempt at a completely relativistic theory.41 Perhaps the 
BI"s are quantities associated with a new "microscopic" ge­
ometry of the Dirac theory and can be related to some obser­
vable effect. 
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APPENDIX A: PROOF OF IRREDUCIBILITY OF THE 
REPRESENTATION OF SOo(4,1) on ,%'(5) 

First we construct a representation ofSOo(4,1) in the 
Hilbert space of :£2 -functions on the unit sphere: 

Analogous to the discussion in Sec. III, we may describe the 
projective transformations of R4 which leave invariant 53' it 
is again an 0(4,1).18 The formula of the projective transfor­
mation is the same as in (25) except that the indefinite metric 
is no longer used. The representation on :£2(53) is defined 
just as in (30) and (31) (with? replaced by u), except this time 
the Jacobian of the transformation (26) never vanishes. In­
troducing U = mu, the generators of rOtations in the various 
planes of projective space can be calculated similarly as in 
(36) and (37), but now contraction of two operators is with 
respect to the four-dimensional Euclidean metric and QI' 
= iJIJul" (Note that all of the de Sitter boosts are hyperbo­

lic for this case.) We denote the generators by the same sym­
bols as in (36) and (37) except with carets placed over them. 

Next we define a representation of SOot 4,1) on 
~ 2(53) ® C i ® C~) ® •• , ® C ~SI' We introduce the quantities 
Yl'lk 1 which satisfy 

(38') 

i.e., the generators of the Clifford algebra corresponding to 
the Riemannian space, R4.23 We define 1'1' as in (39) except 
the Yl'lk 1 's in these equations are replaced by rl'lk 1 'so The 1" L 's 
and 

can all be chosen Hermitian (consider the representation 
ro = Yo' r; = aJ TheSl'v satisfy the commutation relations 

of the Lie algebra of SOo(4)s", and the SI'V along with - i1'" 

givean SOo(4,I)s -/f. We have 
10 " p 

(l/A, )B~I = (l/2m)[P P,SPll 1= i1'" - i[(2s)l2m]P" 
(52') 

as the analog of (52). It is needed in order to prove invariance 
of the representation defined below. 

Now we consider the Hilbert space completion of the 
set [inner product is given by (42')] of all completely symmet­
ric wavefunctions tP(U;;I"';2s) (;kEC~d which satisfy the 
Bargmann-Wigner equations (rtei)l';:: m)tP = 0 
(k = 1, ... ,2s). Denote this space by ,%'Isi. Define the repre-

"-

sentation U of SOo(4, 1) by (50) except replace everywhere p 
by u and S by;. 
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= I exp [ - i(!Cd'vS"v + iwP1'p);:d 

X T~,sltP(U;;I''';2S) (Cd' = W5
,,). (AI) 

We verify, in the same way as for ,%'ISI, that ~ISI is invariant 
under the action of this representation. Since, for this case, 
the multiplier is a continuous never-vanishing function on 
the compact set 53 ,18 it obtains a nonzero minimum and the 
representation is easily shown to be bounded with respect to 
the inner product 

(42') 

Unitarity is proved by using the theorem and also Eq. (52'). 
We can easily verify the U(A)'s satisfy the homomorphism 
property of a representation. Therefore, this defines a repre­
sentation on ~ISI which satisfies conditions (i)-(iii) of the de­
finition. 

At this point we must construct the positive mass UIR's 
of the four-dimensional Euclidean group (actually its cover­
ing group), E(4). analogous to Wigner's construction of the 
UIR's of &I' by Frobenius' method of induced representa­
tions. We introduce the canonical basis of vectors 1 U, S3 s) 
defined as 13 

lu 3,s]s) = U -I(L (u)) 1 (m,O)s3s) 

= U -I(L (u))ll(m,O)) ® IS3S», 

where L -I(U) is the compact analog of the Lorentz boost, 
i.e., L -1(u):(m,O)--+(uo,U)E 53' Proceeding as in Ref. l3, we 
obtain the desired form of the representation ofE(4): Let 
(A,a) E E(4); then 

U(A,a)lus3s) = e;u.a I I(Au)s;s)gs;sl(~)' 
s] 

where 

is a rotation in the three-dimensional spaces of Uo = const 
and 

Wij being the parameters o!:..the rotation~. This defines a 
unitary representation on ,rIm,s), the Hilbert space comple­
tion of the set of all vectors, tP, in the linear span of the 
1 us3s) 's whose components with respect to this generalized 
basis satisfy 

<tP,tP) = ~ L dfl tP*(U;S3)tP(U,S3) < 00. 

[< , ) denotes the inner product on ~(m,s) which makes 
the lus3s)'s "orthonormal."] The method of proof used in 
Ref. 22 to demonstrate the equivalence of the representa­
tions of &I' on ~(m,s, + ) EB ~(m,s, - ) and ,%'Isl can be ap­
plied in essentially the same way to demonstrate the unitary 
equivalence of this representation ofE(4) on ~(m,s) and the 
one defined on ~ISI as follows: 
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'" '" U(A,a)f/!(u;; ;) 

= e - iu·& I exp [ -1i(@'"vSl'v), '. ] f/!(A -IU;;i)' 
(;t I I 

~here if V are the parameters of the SOo(4) transformation 
A. 

Next we prove irreducibility of the representation of 

~SO-0(4-,-I) on ~(m,s). For this we must know the VIR's of 

SOo(4); they are characterized by two numbers ±jo (jo > 0) 
and e, wherejo = !, ~,. .. or, 0, 1,2,.·· and e = jo + n, 
n = 1,2,. ... 42 We denote the characters of the VIR's by 

X [e - l,jQJ .43 We can introduce a basis in a VIR space 

JY( ±jo,e) of SOo(4) which diagonalizes SOo(3); it is de­
noted by 

1j3j;( ±jo,e), j3 = j,j - 1, ... , - j, j = jo,jo + 1, ... ,e - 1. 

(A2) 

The values of the Casimir operators in JY( ±jo,e) are 

Q~O(4V3j;( ±jo,e) = (j6 + e2 
- 1)lj3j;( ±jo,e), (A3) 

Q~O(4)lj3j;( ±jo,e) = ±joeIj3j;( ±jo,e). (A4) 

To prove irreducibility, we will show that the Lie algebra of 

U( SOo(4,1)) satisfies the following conditions: 
(i) There exists a dense subspace 9 (m,s) of ~(m,s) 

whieh is invariant with respect to the Lie algebra of 

if ( SOo(4, 1)); and, furthermore, all of the generators B I' ' Ll'v 
along with the Nelson operator 

'" '" 1 '" '" 
9C = I BI'BI' + - I Ll'vLl'v 

I' 2 I'.V 
are essentially self-adjoint on 9 (m,s). 

(ii) Every irreducible representation £'( ±jo,e) with 

jo = s, s - 1,.··;;.0 and s + l,,;;e of the Lie algebra of SOo(4, 1) 
lies completely in 9(m,s). 

(iii) Eve~ irreducible representation space £'( ±jo,e), if 
it occurs in iil'(m,s), occurs at most once. 

(iv) The ve~tors lii3;( ±jo,e) form a complete orthon­
ormal basis in JY(m,s). 

(v) The generators Ll'v acting on the basis vectors 
I j3j;( ±jo,e) are given by 

Jq I j]j;( ±jo,e) 

= - [j(j+ 1)]II2(1QJj3ilii3+q)lj3+qj(±jo,e), 

/Nq 1j3j;( ±joe) 

= ! [(j + W - j6][(j + If - eZl/(2j + 3)(j + Ljj1/2 

X (1qjj311jj + Ij3+q)U3+q,i+ I;(±ioeo) 

± iUoc/[i(j + IW /2 1 (lqjj311.iii3 + q) li3 + q,i;( ±joe) 

- [(/ - j6)(/ - eV(2i - I)l] 1/2 

X (lQJi3llji - Ii3 + q) li3 + q,i;( ±jo,e). 

[q =",0, ±) w~h Jo = L12, J ± ~ + (1t:v1) (L23 ± iL3tl 
and NA, = L 30, N ± = + (1Iv2) (L to ± iL20 )]; and the gener­
ators BI' acting on these basis vectors are given as in Table II 
of Ref. 8. ( IW31 Iii j + q) etc. are Clebsch-Gordan or vec­
tor coupling coefficients as given in Edmonds.51 

That these conditions determine the VIR 
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(.JfiT;P, s) 

of SOo(4, 1) can be seen from the decomposition of this VIR 

into VIR's of its maximal compact subgroup SOo(4) written 
formally as 

£'(~,s) 
s 

= I I 6l (£'( + jo,e) 6l £'( - jo,e)), (AS) 
c>s+] jo = o,1.··· 

jo ~ 1/2.3/2 ... · 

which we infer from the results of Ref. 8 or 16. Conditions 

(ii)-(iv) show that ~(Sl and £'(~ m2 / A. 2, s) are equivalent as 
Hilbert spaces, and (i) and (v) show that the representation of 

SOo(4) on ~(SI is in completely reduced form with the 

expression for the generators of SOo(4, 1) being the same as 
in a VIR (cf. Ref. 8). Therefore, they determine equivalent 
representations. 

Condition (i) is true because of Nelson's theorem.44 In 
order to prove (ii)-(iv) we describe the E(4) analog of Joos' 
results on the decomposition of a VIR of ?J with respect to 

SOo(3, 1),45 i.e., the decomposition ofa positive mass VIR of 

E(4) with respect to SOo(4). 
We consider the set of vectors Ij3,j;( ±jo,ej;,,) which 

reduce SOo(4): 

li3,j;( ±jo,c),'Tj) 

= ~ L dfl IU,S3;(M,s)(u,s3;(M,s)lj3,j;( ±ja,e)'Tj) 

. (A6) 

('Tj is a parameter labeling the possible multiplicity). 
For s = 0, (A3) and (A4) give the following simulta­

neous eigenvalue equations for the transformation coeffi­
cients in (A6) (Ja = 0)46; 

Jo(U I j3,j;(0,e),'Tj> = j3 < ulj3,j;(0,e),'Tj), 

J 2 (uIj3,j;(0,e),'Tj) =j(j + l)(uli3,j;(O,e),'Tj), 

(A7a) 

(A7b) 

Q~OI41(ulj3,j;(0,e),'Tj) = (e2 
- 1)(ulj3,j;(0,e),'Tj), (A7c) 

where Q~O(4) = J2 + N2. 
Normalized solutions in 2'2(S3) ( = ~(Ol) of these equa­

tions are the four-dimensional spherical harmonics, 
( I · . (0) -ylill . b 47 

U 13, J; ,e = ejj, ' glven y 

-(ill _ _ 1 [e(e + j)! ] 112 (M)112 
Y CD, - YeD3 (u) - M3/2 (e _ 1 _ i)! j;f 

X yh (~) P -(j+ 1/2) (~) 
J lui e-l/2 M' 

e = 1,2, .. ·, j = O,l, ... ,c - 1, j3 = - j, - j + l, ... ,j, (A8) 

with M 2 = Uo + U Z the four-dimensional sphere, S3' 

Y?(u/lul) denoting the three-dimensional spherical har­
monie, and P e--({;!; 1I21(x) being a Legendre function having 
real parameters e -! and - (j + !).48 The normalization 
factor, necessary to ensure orthonormality of the YCjj, 's, 

N(e,j) = [e(e + j)!/M3(e - 1 - j)!] liZ, 

follows from the orthonormality properties of the three-di­
mensional spherical harmonies and the Legendre functions. 
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The general case (s#O) is considerably more complicat­
ed. From the definition of the spinor base of£(4) [replace p 
by u in (44) and neglect the factor of €], we obtain the follow­
ing transformation coefficients on which we base our discus­
sion49

: 

{u, ~;(M,s)U3,i;( ±io,c),1]) 

= L iP~'3(L -1(U))(U,s3;(M,s)li3,i;( ±io,c)1]), 
S3 

{u,B;(M,s)li3,i;( ±io,c),1]) 

= L iP;'B (L (u))(u,s3;(M,s) I i3,i;( ±io,c),1]), 
'3 

[(¢lu,A 1* = {u,~ I¢) and iP1s3(A) 

=iP~s3(A -I) for AESOo(4)]. 

In order to determine the coefficients 

{u, ~;(M,s)li3,i;( ±io,c),1]), 

(A9) 

we seek the matrix which reduces the Kronecker product of 
two VIR's of SO(4), i.e., the product of a self-conjugate one 
and X Is.sJ 

Xfc-I.OJ ®Xls,sJ. (AlO) 

The result obtained by Biedenharn is50 

U3,i;( ±io,c) 

= L Yc.r.m, ® Is, ~ )[(c ±io)(c + io)(2r + I)(2s + 1)]· 12 
m"r,c 

W-I) 

W-I) 
r 

~(C ±io - I)} 
~(c +}o - 1) , 

(All) 

where { .. ·I represents Wigner's (9:i) coefficients-or Fano's 
X coefficient51-, Ye.r •m , is the vector in ,Y'2(S3) correspond­
ing to the spherical harmonic, Yerm (u), and Is, A ) represents , -
the standard basis vectors in the (2s + 1 )-dimensional VIR 

of SOo(4), X fs•sJ • We have no degeneracy and the multiplic­
ity parameter 1] has been dropped. {u, A;(M,s)I 
= (ul ® (s, ~ 1,52 so that using (AI 1), weobtainforthetrans­

formation coefficients 

{u, ~;(M,S)U3,i;( ±io,c) 

= L [(c±io)(c+io)(2r+ I)(2s+ I)]·/2Ycrm,(u) 
c,r,m, 

{

s W-I) 

X (s~rmr ISW3) 0 W - 1) 
s r 

[In commuting this we have used 

Y erm, ® Is, ~ ) = i df1 S3 Yerm,(u/)lu ' ) ® Is~ ) 
S3 

together with lu', A;(M,s) 1 = lU') ® IsA ) and also {u, A'; 
(M,s)lu',A;(M,s)1 ~os (U,U')OA·A. 53]- -

- 3 __ 

Next, from the defining properties of the I i3,i;( ±io,c) 
and the spinor basis we obtain the following equations: 
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:lq {uli3,i) = -[j(j+ I)]1/2(lqii3II.iii3+q){uli3+q,i), 

(A13a) 

{Nq { U I i3,i) 

= { [(j + qz - i6][(j + 1)2 - c2l/(2i + 3)(j + 1)1112 

X (lqii311ji + Ii3 + q) {uli3 + q,i + 1) 
± i{jae/[j(j + 1)] 1I21(lqii3II.iii3+ q){ uli3+ q,i) 
- [(f - i6)(/ - c2)1(2i - I)j] 1/2 

X (lq.ii3II.ii - Ii3 + q) {u li3 + q,i), (A13b) 

(N 2 + :l2l{ ul i3,i) = (c2 + i6 - I){ ul i3,i), 

JoN{UU3,i) = ±cio{uli3,i), 

r df1 t;: {u, ~ li3,i;( ±iOC)*OAB {u,~ lii,}';( ±ioc) JSJ 

(A13c) 

(A13d) 

= 0, ,,OJ'j'O±, ± Ac" (A13e) 
1313 )0' 10 

(For simplicity we have omitted the fixed parametersM, s, c, 
io and A, S3' except where necessary.) 

From (A13c) and (A13d) and (AI2) we obtain with 
A A A A A. A A A A A A A54 
J = Jo + S, N = No + S or J = Jo + S, N = No - S : 

{ + N6 + J6 ± 2(S2 + SOJo + SoN)I {uli3,i;( ±ioc) 

= (c2 + i6 - I){ u I i3,i;( ±ioc), 

± (S2 + SoJo + SoNo){uli3,i;( ±ioc) 

= ± cio{ uli3,i;( ±io,c) 

(the + sign comes from N = No + S and the - sign comes 
from N = No - S). Vsing these equations with (A 7) gives 

c = + (c +io)' (AI4) 

(Since c = io + 1] and c must be positive, the solution with the 
minus sign has to be discarded.) Substitution of(AI4) into 
(AI2) gives55 

{u,~;(M,s)li3,i;( ±io,c) 

=(_I)2h + H sL [(c±io)(2r+ I)]1/2Yq::jorm,(u) 

( A I .. ) {s i2 i.} X s, rmr S1']13 . . 
- h J r 

(A15) 

withi. = !(c ±io - I),i2 = -!( ±io - c + 1), and {···I is 
the 61 symbol as defined in Edmonds. 5 

I The triple s,i2,i. 
must satisfy the triangle inequality56: 

Is-i21<i.<s+i2 and S+i2+i2 an integer, 

from which we obtain the desired restrictions onio and c: 

s + I<c and io<s. (A16) 

To demonstrate the completeness condition, we first 
observe, on the basis ofunitarity of the representation 
US(A), the validity of the following equation57: 

L {u.4li3,i;( ±io,c){u',~ 'li3,i;( ±io,c) * 
ih 

= L ~~B(Lu' l{L u-; ·u~ li3,i;( ±io,c) 
ih 

X {(M,O),~ '1i3,i;( ±io,c)* ~~;A' (L/",), 

p, Moylan 

(AI7) 
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where L Ii I is the inverse boost taking u' to rest. We have58 

A A 

(L;; 1)8 = IF and (L u--:-I)g = ub, (AI8) 

and we observe that59 

(~)1/2 p~-{r+ 1/2) (~) 
lui c- 1/2 M 

2 - {r+ 1)/2 (Iub I )r!2 
;:::; --1 

(r+~)! M 

lubl 
for ----+1 

M 
(A19) 

so that, using (A15), (A8), (A18), and (AI9), we obtain 

c,jo ji!. 

rto (2r + I) -1/2C.~j() (e ~~~ ~ io) 

x[ (e+io)(e =fio + r)! ]1/2 (I _ u )-1/4 

(e + io - I - r)! 0 

xP -{r+ 1/21 (u )(2r+ I) {s i2jl} {S j2jl}) 
c =Flo - 1/2 0 . . a 

}zs r }ZS 

X (sBrmr IsrsB ') Y~"(! L u--:- IU 1 i) 
2s A.. 

= I (Y(s,r;u o)) (sBrmr IsrsB ') y~n,u L u-:- IU LJ, 
r = 0 

(A20) 

where Y(s,r;uo) is the quantity in the parentheses. Substitut­
ing for the Legendre polynomial the following,60 

2r ~ 1/2 I( -' 1)1 P - (r t 1/21 (u ) _ r. e + io - r - . 
cT-J;) -- 1/2 0-

J1T(e + jo + r)! 

X(I - U 2 )1/4 + rl2cr~. I (U ) o C +- In - r - 1 0' 

where C ~-1=J" _ y_ I (uo) is a Gegenbauer polynomial, we ob­
tain for the "radial part" 

Using this result, (A20) becomes equal to the sum 

I x 

2
2M3 I nC ~ - I (Uo), 

1T n = I 

(A2I) 

which must be interpreted in the sense of a distribution on 
~IS). 

Denote spherical polar coordinates on S3 by x, e, ifJ with 
Uo = M cosX, U I = M sinX sin e cos ifJ, U 2 = MsinX sin e 
sin ifJ, UJ = M sin X cos e and dfls, = M 3 sin2 X 

X sin OJ dxdedifJ. Let N = (1,0,0,0) be the north pole on Sy 
We wish to show (A21) is equal to fjs, (u,N), where fjs, (u I ,u2 ) 

is the fj function on S3 defined by 
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1, dfls, 1/'(u,,~dfjS,(UI,U2) = 1/'(U2,~J 
Let 1/'( x,n'~i) [n = (e,ifJ )] be an element of a){s). We have 

L dfls, 1/'(x,n'~i) 2~3r ctl eC~_ I (uo) 

= _1_ I e II duo f dflsz ~ I - u~ 1/'(uO,n,~,)C ~ _ I (uo). 
21T c = I --- I Js, 

(A22) 

Now let X~I ([ - 1,1]) denote the space of all complex-val­
ued functions,J(uo), on the interval [ - 1,1] such that r I I f(uoW(l - u~ )1/2 duo < 00. 

The Gegenbauer polynomials C ~ _ I (uo) are complete in 
Y~I ([ - 1,1]), and we have the following expansion61

: For 
f(X)EY~, ([ - 1,1]) 

00 

fIx) = I hi C J(x) (A23) 
I~O 

with 

hi = 2 II f(x)C !(x)( I - x 2) 1/2 dx. 
1T - I 

(A24) 

C J( 1) = 1+ 1. (A25) 

For fixed n and ~i' 1/'(x,n'~i) = 1/'n,~, (UO)EY~, [ - 1,1], so 
using (A24), (A25), and then (A23), we see that (A22) is 
1/'(N,si) [which stands for 1/'(N,n'~i)' n arbitrary-the value 
1/'(N,n'~i)being the same for all (n)]. Thus (A2l) is, in fact, 
equal to fjs,(u,N). On the grounds of rotational invariance 
[Eq. (Al7)] we infer for arbitrary u' with U'2 = M2 the de­
sired completeness relation 

I I !u~ Ij3,j;( ±jo,e))[u',~ 'li3,j;( ±jl,e))* 
c, .:i};1 jj~ 

= fjs, (u,u')fj AA' (A26) 

since 

(/ ~B (Lu ),~ ,~~, (L u') = fj AA' 
A ~ 

because of the unitarity of the iiJ (A )'S for A an element ofthe 

SOo(4) subgroup. 
Finally, in order to establish irreducibility of ~(S), con­

dition (v) needs to be verified, The expressions for the genera­
tors Jq and Nq in (A 13) are the same as in c<;..ndition (v). To 
compute IlJ...atrix elements of the generators B" of the repre­
sentation 9?'s) in the Ij,h;(e, ±jo)) basis, we may use the 
commutation relations directly as is done in Ref. 15 or calcu­
late first the matrix elements ofP!,- in the I j,j3;(e~±jo) basis 
and then determine the matrix elements of the B" '5, using 

~ A 61M 
the matrix elements of P" and L"V and the equation -, 

1.
"

5 = (1/ A. )B" 
= (1/A. HP

" 
+ (iA. 12m) [P",Q70(4)] 1 [A. = ~(mlpn· 

For example, using Eq. (A 7c) and this equation along with 
the Po of Ref. 64, we obtain the following upon replacing the 
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A. in Eq. (2.19) of Ref. 64 by ± ie and choosing the phases in 
their paper to be ifJ = arctan [(e + Wip] and ifJ' = arctan 
I - [Uo - Wip]: 

Boli,i3'( ±io,e) 

= !a( ±io,e) [U + e + I)(e - i)l 1/21J,i3;( ±io,e + 1) 

+!b(±io,e) [U+io)(i±io+ I)]1/21J,i3;(±io+ I,e) 

- ~e( ±io,e) [U ±io)(i +io + 1)] 1/21J,i3;( ±io - I,e) 

+!d(±io,e) [(e+i)(e-i-I)]1/21J,i3;(±io,e-I), 

where 

a( ±io,e) 

= _ i[ I (s + !)2 - (e + !f J I - p2 - (e + ~)2 J ] 112 
U02 - e2)[j02 - (e + 1)2] 

b( ±io,e) 

= + i[ I (s + !)2 - ( ±io + !f J I ( ±io + !)2 + p2 J ] 112 , 
(e2 - i~)[e2 - Uo + 1)2] 

d ( ±io,e) = - a( ±io,e - 1), 

e( ±io,e) = b ( ±io - I,e). 

Similarly, we may write down the matrix elements of Bj by 
the use of the above expression for Bj and also Eq:J2.20) of 
Ref. 64, which determines the matrix elements of Pj in the 

SOo(4) basis. 
The remainder of the Appendix will be devoted to the 

proof of the unitary equivalence of ~(S) and [39(s). For this 
purpose we define a transformation l' which maps T3 into S3: 

UES3-p = 1'uET3 :p = [m2uo-
I
,( - mu;!uo)], 

(A27) 

pET3-u,,= 1'-lpE S 3 :U = [m2po 1,( - mp;!po)]. 

!-et u-u' = Au be a conformal transformation of S3: 

AEO(4,I) and 

u~ = (aoouo + .IaOjuj + aOt )I(atOuO + .Iatjuj + att ), 

(A28) 

U; = (aj()uo + .Iaijuj + ajt)l(atOUO + .Iatjuj + att ), 

with 

A = 1 att 
a

tv I. (A29) 
aw aflV 

Under the mapping 1', we find that the corresponding point 
on T3 undergoes the following transformation: 

2719 

p~ = (attpo - .Iatjpj + ato)l(aOtpo - .IaOjPj + aoo), 

(A30) 
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" 
We can write this projection as A-A with 

att 
- ~-1 
A =AoAAo = -aj( 

o 0 
Ao = 0 0 -13 

o 0 

aOt 

-atj 

aij 

-aOj 

atO 

-a'D 

aoo 

We see that Ao is itself an element ofSOo(4, 1).65 
If pEru, using (A27), we find 

, 

(A3I) 

dils = Im/pol 3 dil r +. (A32) 
J J 

An alternative form for (42) is given by Eq. (69): 

(ifJ,rfJ) = ( Im/pol 2s I I (ifJ,rfJW dil r +. (A33) Jr; £ 3 

Hence, if 1jJE ~Isl 

( IlrfJ(u,S-WdilsJ JS3 ?; 

= ( Im/poI2SlPo!mI2S-3 I IrfJ(1'-lp ,S-W dil r ,+ (A34) 
JrJ ?; 

(for simplicity we assume the labels S- and 5 refer to identical 
bases in their respective internal spaces, and we will use these 
labels interchangeably.) Using this equation, we define a uni­
tary mapping Il(p,sl from ~(S) to [39ls) by 

~(SI3"'(ur)_(Il rfJ)(p.t")= rfJ(1'-lp,S). E[39(s), 
'f/,~ (p,sl ,~ lPo!mI 312 - S+'P 

(A35) 

[39(s) 3'" (p .t")_(Il - I ifJ)(u S-) = ifJ (1'U,S-) . E~(s). 
'f',~ (p,s) , luo!mI 3/2 - S +'P 

" Next we choose the rfl's in terms of the rfl's 
-" 0 0 -" i .Jl r i 'SOi r K = r K' r (KI = - r IKI IKI = - I (A36) 

(other possible choices for the rfl's would be connected to 
this choice by a similarity transformation of the internal 
spaces of the S- 's and 5 's). We have then 

Sij = Sij and SOi = iFi· 

We now prove that 

Il( p,s) U (A ) = U (A )Ill p,s) . 

First, because of (A3I) 

U(A) = U(Ao)U(A )U(Ao)-I. 

(A37) 

(A38) 

(A39) 

Since all operators in (A38) and (A39) are unitary, substitu­
tion of (A39) into (A38) reveals that (A38) is a statement of 
unitary equivalence. To prove (A38), we consider 

(A40) 
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We also have 

[U(A )ll(p.slt/J] (p,S) = exp[ - i(!uI"''Sl'v - iwprp)] 

X t/J(7- IA -Ip/m) 

[aol(A -I)polm -l:aoj(A -I)p/m + aoo(A -1)]3/2 -H ip 

X 1 ao'!"] = :)Po/m - l:aoj(A ~11)pj/m + aoo(A = :) 13/2 - s + ip 

att(A )polm -l:a,j(A )p/m + a,o(A ) 
(A41) 

By the definition of the automorphism 7, 

7-
IA -I = A -17 -I,sothatEq.(A38)willbeestablishedpro­

vided we can show 

A. A .A A 

exp [ - i(!(JI'vS I'V - IW P rp) ] 

= exp[ - i(!uI"vSl'v - iwprp)] . (A42) 

To prove Eq. (A42), it suffices to show that it is true for 
anyone-parameter group of rotations in the a-b planes of 
projective space. First consider a rotation in the i-j plane. 
We must show 

S (e(;)Jij) = S (ew/ij). 

From (A31), w = w, and, using (50) and (AI), we obtain 

S(eW[lj) = e -1{JS'j S(ew/I)) = e -,"Ws,j = e -,ws iJ , , 

where the last equality follows from (A37). For a rotation in 
the 5-i plane of projective space we have 

S (ew/'') = e - iwSOi 

by (AI), and 

S (ew /") = S (e - w/") = e + itw( - iT'll 

using (A3l) and (50) [Wi (iri ) = WSi SSi so SSi = iri and S Si 

= - iF']. By (A37), we conclude from these two equations 

S(ew/'') = S(ew/"). 

For a rotation in the O-i plane of projective space, 

using (AI) and 

S (e'"/u,) = e - il - w(So'll. 

By (A36), /ri = SOi, so 

S (ew/u,) = S (ew/o,). 

Finally, for a rotation in the 5-0 plane of projective space 

S"( w/'o) -ilwSo'l -i!w(-ir,,11 -i(w(-iToil S( WI'o) e =e =e =e = e 

using (A3I), (50), (AI), and (A36), which completes the 
proof. 

Now we can understand why the exp[ - iW(l/A )B/s] 
defined in (50) do not leave JY(m,s, + ) and JY(m,s, - ) in­
variant. Consider U(exp(ASi )), the transformation in .:n(sl 
corresponding to a rotation in the i-5 plane of the projective 
space defined in Sec. III. Comparing (A28) and (A30) we see 
this is just an ordinary rotation of S3 in the i-O plane of u­
space. But depending upon w, points in the upper hemi­
sphere may move to points in the lower hemisphere and the 
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other way around. With the aid of the transformation 7, the 
claim follows from this remark.66 

APPENDIX B: PROOF OF II Tf",S) t/JII < kll t/JII FOR A A DE 
SITTER BOOST 

For a de Sitter boost in the 5-i (i = 1,2,3) plane: 

II T~p.sl t/J112 = (T~p.sl t/J,T~p.sl t/J) 

= ~ f dflT, Im/pol2s [T~p.slt/J]*(p,s)[T~p.SIt/J](P,S) 
and 

~ f dflT3 Im/pol2s [T~p.slt/J]*(p;s)[T~p.slt/J](P;S) 

= f ~ dflT, Im/pol2s 

X 
t/J*(p';t" )t/J(p';S) ~ (p' =A-1p) 

IIl(A -1;p/mW- 2s 

= f ~ dfl ;-3Im/p~ 1

2s I;~ 12s 

X IIl(A -1;p/mWst/J*(p';S)t/J(p';S) [by (27)] 

= f ~dfl~, Im/p~12st/J*(p';S)t/J(p';s)=1It/J1I2. (BI) 

[In the second to last step we used (27) and in the last step we 
used (31). 

For A a de Sitter boost in the 5-0 plane, we have 

2s 
X I t/J*(p';s)t/J(p';s) 

5 

= f dfl ~3 1 ~ 1

2s 

1 a
06 

+ aoo 1

2s 

Po Po 

X I t/J*(p';s)t/J(p';s) 
5 

(since pb =1= 0). Let uo = m/po, then - 1 < uo < 1 and 

[a06uof..;;a062 = aoo
2 - 1. 

Hence we have laoo + a06uoI..;; laool + (aoo
2 

- 1)1/2 = e - I 

since laool = Icosh( - t) I; so 

II T~p.sl t/J1I2..;;e - 2s1 11t/J112. (B2) 

The prooffollows from (BI) and (B2). 
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In many branches of physics, it is important to know the decomposition of a product 
representation p ® P ® '" ® P (n times) of identical representations p of a simple Lie algebra into 
irreducible components with a given Young tableau symmetry. We show that the notion of 
representation indices introduced elsewhere is a very useful tool in dealing with this problem. We 
calculate explicit formula for general pth order indices D I PI (p) for all classical simple Lie 
algebras. Sixth-order indices for exceptional Lie algebras are also discussed. 

PACS numbers: 02.20.Sv 

1. INTRODUCTION 

Let if; be a one-particle wave function in any quantum­
mechanical system. The wave function corresponding to n 
identical particles in the same state if; will be described in 
terms of the tensor product 

if;® if;® •• , ® if; (n times). 

Because of the Pauli principle, we have to symmetrize or 
antisymmetrize these wave functions. In reality, the situa­
tion is more complicated in view of many internal degrees of 
freedom associated with some symmetry group inherent to 
the system. Let L be a Lie algebra and let p be a representa­
tion of L, which is not necessarily irreducible. We often en­
counter the following problem in many branches of physics. 
We consider the nth tensor power 

P ®p ® ... ®p (n times) (1.1) 

of a representationp, which will be simply denoted hereafter 
asp". Then we first decomposepn into a sum of represent a­
tions p"(T) possessing general permutation symmetry asso­
ciated with Young tableau' r. We write this fact as 

p" = I. Gl p"(T). (1.2) 
r 

It is also convenient to denote the representationp by a single 
box D. Then, for case n = 2 and 3, Eq. (1.2) is graphically 
depicted as 

D®D = CD Ell 8 ' 
D®D®D = § Gl tp Gl tp Gl Oll . 

However, since this procedure is well known,2 we will not 
dwell upon it. Moreover, if the Lie algebra L is of type A N _ , 

corresponding to the SU(N) group and ifthe representationp 
is the N-dimensional defining (or basic) representation of 
AN _ 1 , then p"(r ) is irreducible. 1 Nevertheless, this is not 
generally true if L is not of type AN_l and/or ifp is not the 
defining representation of AN _ 1 • For example, let us consid­
er the case of L = D5 corresponding to the SOt 10) group and 
of p being the 16-dimensional spinor representation with 

highest weight A 5• Then, we find 

ITIJ = [3A 5l Ell \ A, + A 5 J, 

816 = 672 + 144, 

§ = IA2 +A4], 

560 = 560, 

(Ua) 

(1.3b) 

j~ = lA3 +A5\ GlIA, +A5\ Ell lA41, (1.3c) 

1360 = 1200 + 144 + 16, 

where! A l stands for the irreducible representation of L 
with the highest weight A and where the dimension is shown 
under each representation. Hereafter we adopt the number­
ing of simple roots of L as in Ref. 3. Let us point out that we 
have chosen the example L = Ds because of its relevance to 
the grand unified models based on the SO(1O) group.4 We 
return to this problem in Sec. 3. 

The decomposition ofp"(F) becomes rapidly more com­
plicated if the rank of L gets larger and/or if the dimension of 
p is larger. In special cases efficient particular decomposition 
prescriptions can be found such as generating functions (cf. 
for instance Ref. 5). However, for a generalL andp there are 
no efficient general methods. An ideal method would have to 
be general as to the type of the Lie algebra L, its representa­
tionp, and the symmetry r. Let us recall the known methods 
to the problem which has some degree of generality at least 
in one of the three quantities L, p, and r involved. 

The method of Ref. 5 provides the decomposition of 
pn(F) for all rand G compatible with the requirement that 
dimp<5. In each particular case the decomposition is given 
by the coefficient of the corresponding term in the power 
series expansion of a generating function. 

The method of Ref. 6 is general as to the choice of p and 
relatively easily extendable by recursion calculations to any 
r of interest. However, the Lie algebra L is only that of 
SU(2). It appears that it can be extended to other L only with 
extreme efforts. 

In Ref. 7, besides computations of some particular cases 
motivated by physics, one finds decompositions of p"(r) for 
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a few lowest choices of p and r, and for the Lie algebras of 
type A N with a general N. 

In the absence of an ideal method, it is important to 
develop methods which would allow finding the decomposi­
tion of pn(r) at least in most cases of interest. The only meth­
od of this kind which is general as to the choice of L,p, and 
recursively extendable to rather large r, was invented in Ref. 
8 and further extended in Refs. 7 and 9. For each decomposi­
tion it provides equalities similar to the equality of dimen­
sions of representations. A decomposition is then found by a 
systematic (computer) search through all possible candidates 
for the decompositions which would satisfy those equalities 
with the hope that the solution will be unique. It often turns 
out to be the case as demonstrated in Refs. 7 and 9 on rather 
large examples. The role of the dimension of representations 
of L is played in these equalities by a more general (integer­
valued) quantities: anomaly numbers8 and indices of repre­
sentations. 1O 

The recent generalization J J of the indices and anomaly 
numbers allows writing even more such independent equali­
ties and thus providing a more powerful method, i.e., more 
restrictions on the possible candidates for the decomposi­
tion. However, in order to make use of it, the results of Refs. 
8 and 9 have to be rederived for the new indices of Ref. 11. 
That is the first of the three aims in this paper. The second is 
a derivation of a closed algebraic expression for the new pth­
order index for all classical simple Lie algebras. Correspond­
ing expressions for the five exceptional simple Lie algebras 
cannot be obtained the same way because some auxiliary 
information for that is not available in a suitable form. 
Therefore as the last result of the paper we find explicit ex­
pressions for the sixth-order index for G2 , F4 , E 6 , and E 7 • 

This index is trivialfor E8 • As in I, letD IPI(w) = TrlwlJp be the 
pth-order fundamental indices for a generic finite-dimen­
sional representation w which may not necessarily be irredu­
cible. Here, Jp is the pth-order fundamental Casimir invar­
iant of L [see Eq. (1.8)]. 

If a given representation pn(r) for a given Young tab­
leau r is written as a direct sum of irreducible representa­
tions Pj of L as 

then we can easily show the validity of 

Dlpl(r) = IDIPI(pj)' 
j 

where we have written for simplicity 

DIPI(r)==Dlpl[ pn(r)] 

with r pn(F) hereafter. 

(1.4) 

(1.5) 

(1.6) 

Note that the validity ofEq. (1.5) is nontrivial for all 
values of integers p such that the pth-order fundamental Ca­
simir invariants Jp exist non trivially, as we see from the re­
sult ofl. Since the value of D I PI( Pj) can be readily calculated, 
Eq. (1.6) would furnish a strong check for the correct decom­
position equation (1.4), provided the numerical value of 
D I pl(r) is calculable. We give an explicit formula for D I pl(r ) 
in Sec. 2. A formula for D IPI( p) is given in Sec. 4 for any 
classical simpleL and its irreducible representationp. Also, 
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i4(r) has been computed in Sec. 2 for any simple Lie algebra. 
Moreover, some practical illustrative examples such as the 
decompositions (1.3) are shown in Sec. 3. 

For later use, we recapitulate here the definition J 1 of the 
pth-order index D (PI( p). Let L be a simple Lie algebra with 
basis t 1> t 2 , ••• ,td • The Lie multiplication table is written then 
as 

(1.7) 

where the usual summation convention on the repeated in­
dex is understood. If the rank of Lis r, then L has 12 precisely 
r fundamental Casimir invariants. We construct their basis 
Jp for a pth-order Casimir invariant according to the pre­
scription given in I. Writing Jp as 

(1.8) 

for some totally symmetric coefficients g, ... /1p, they satisfy 
orthogonality conditions such as 

g"va[3g/1vga[3 = 0 (p = 4), 

n/'VAa[3 - 0 ( - 5) .5 g/1VAga[3 - P - , 
n/IVAa[3Y _ n/'VAa[3y 
.5 g/1vgAag[3y -.5 g/1VAag[3Y 

- n/'VAa[3y - 0 
- .5 g/1VAga[3Y -

(1.9a) 

(1.9b) 

(p=6). 
(1.9c) 

Here, we lowered suffixes by means of the Killing metric 
tensor g/1V defined by 

g/1V = cTr(ad t/1 ad tv)' cjoO (1.10) 

for unspecified normalization constant c. The explicit forms 
of Jp for p<5 are found in I. Letp be a representation of L, 
which is not necessarily irreducible. Then, the pth-order in­
dex D I PI( p) is now defined by 

DIPI(p) = TrJ =g,···/1PTr(X X ···X ), (1.11) 
P J.LI J.t2 J-J-p 

whereX/1 is the representation matrix oft/1 in the representa­
tion p. When p is irreducible, then we have 

(1.12) 

where d (p) is the dimension of p and Jp (p) is the eigenvalue 
of Jp inp. Ifp is reducible and is decomposed as a direct sum 
of irreducible components Pj by 

p= I (f)Pj' 
j 

then we have 

j 

(1.13) 

The explicit formula for Jp ( p) (p being irreducible) is com­
puted in Ref. 13 for casesp<4 and in I for p = 5. More gen­
eral formulas for D (Pl( p) will be presented in Sec. 4, and the 
case of p = 6 for exceptional Lie algebras is also dicussed in 
Sec.5. 

Also, for many practical problems, the second- and 
fourth-order indices 12 ( p) and 14 ( p) of Ref. 9 are very useful 
in view of extensive tabulation3 of their numerical values, 
which are defined by 

12p(p) = I(M,MY= Tr(gijH;HjY (1.14) 
M 
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for nonnegative integer values of p. Here, H j (j = 1, 2, ... ,r) 
refer to the Cartan subalgebra elements of L, and the sum­
mation extends over all weights M of p. Actually, '2( p) is 
simply proportional to D (21( p), i.e., 

(1.15) 

for some constant Co' Since the presence ofthe normalization 
constant Co is often irrelevant, we may identify '2(P) with 
D (21( pl. The relation between '4( p) and D (41( p) is more com­
plicated and is discussed in Ref. 13. 

Finally we simply remark that D (PI( p) are also useful I I 
for finding the Clebsch-Gordan decomposition of the pro­
duct of two irreducible representations as well as for the 
branching rules. 

2. EVALUATION OF [j Pl(I1 

Let L be a simple Lie algebra and let p be a representa­
tion of L, which is not necessarily irreducible. Any generic 
element t of L is written as 

(2.1 ) 

where t l , t2, ... ,td is a basis of Land whereS I, S2'''',Sd are 
some real or complex numbers. Then, the matrix X repre­
senting t in the representation p is given by 

(2.2) 

HereX,l ( = P(t,l )) is the representation matrix oftI" Let Gbe 
a connected component of the Lie group generated by the 
Lie algebra L. Then, any gEG can be written as 

g=e' (2.3) 

for some tEL. Correspondingly, its representation ma­
trix U is expressed as 

U p( g) = eX = exp(s IlX,l ). 

Since we have 

TrX=O 

for any semisimple Lie algebra, we find 

det U = 1. 

(2.4) 

(2.5) 

(2.6) 

Moreover, assuming L to be a compact Lie algebra, U is a 
unitary matrix, i.e., 

(2.7) 

where E is the identity matrix inp. 
If if; is a vector in the representation space of p, then by 

action of gEG, if; will transform into 
g 

if;-if;' = Uif;. (2.8) 

Let d (p) be the dimension of p and set for simplicity 

N=d(p). (2.9) 

Then, in view of Egs. (2.6) and (2.7), we may regard N X N 
matrix U to be an element ofthe defining (or basic) represen­
tation of the unitary unimodular group SU(N). Let r be a 
given Young tableau with k rows specified by Young's sym­
bol (f"f2, ... jk) satisfying 

fl>f2>f,> .. ·>fk >0. (2.10) 

Iffk = 0, then we may simply omit it and replace k by k - 1. 
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Correspondingly, we often write 

r = (f2,f2, ... jk)' (2.11 ) 

We emphasize the fact that the notion of this Young tableau 
is independent of any specific Lie algebra L or of the SU(N) 
group under consideration. Next, consider the tensor pro­
duct if;n = if; ® if; ® '" ® if; (n times) and construct the irreduci­
ble representation space if;n(F) of the SU(N) group with a 
given permutation symmetry associated with the tableau r 
out of if;n. Under the transformation eguation (2.8), we will 
then have 

g 

if;n(F )-if;"(F) = U n(F )if;"(F ) (2.12) 

for some matrix U n(F), whose trace defines the character 
Xr(U) by 

(2.13) 

Note that the total number of boxes in the tableau r is given 
by 

(2.14) 

Next, we restrict SU(N) to its subgroup G. Then, its restrict­
ed representation p"(r) will generally be reducible under G. 
Our task is to compute D (pi fp"(F)]. As we will see below, 
this can be readily accomplished once the explicit formula 
for the character Xr(U) of the SU(N) is known. However, 
since its derivation is a little complicated, we will explain it 
first by a simpler example of n = 3 with r = 0::0 . In that 
case, the character is easily computed to be 

XOTI (U)= U(TrU)3+2Tr(U 3)+3TrUTr(U 2)], 
(2.15) 

where Tr U 1(/ = 1, 2, 3) refer to the trace with respect to the 
N-dimensional space. Similarly, for the antisymmetric re­
presentation, we have 

X (U) = ! I (Tr U)3 + 2 Tr(U 3
) - 3 Tr UTr(U 2

)]. 

§ 
(2.16) 

Since U is defined by Eg. (2.4), the right side ofEg. (2.15) can 
be evaluated as 

X~ (U) 

= i(N+ I)(N+2)+ !(N+2)(N+3)TrX 2 

+ i2 (N + 3)(N + 6)Tr X 3 + i (N + 4)(Tr X2f 

+ -.h [N 2 + 17N+54]TrX 4 + ... , (2.17) 

where ... in Eg. (2.17) implies terms involving traces of higher 
powers of X such as Tr X 5

, Tr X 2 Tr X 3
, etc. 

Let % be the representation matrix of t in the general 
representation p"(F ) of L. Then, 

_ 00 1 _ 
Xr(U) = TrwlexpX= I -Trlr)(X)" 

"~o n! 

= d (F) + J.. TrW 1(%)2 + J.. Trlr)(%)3 + "', 
2! 3! 

(2.18) 

where d (F) is the dimension of p"(r) and Trwi indicates the 
trace in the representation spacep"(r). Now we specialize r 
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to correspond to the tableau ITIJ and note 

X = 51'XI' , % = 51'%!," (2.19) 

Since 5'''s are arbitrary real or complex numbers, we com­

pare coefficients of 51"51""'5I'P of both sides of Eqs. (2.17) 
and (2.18). In this way, we find 

d(r) = iN(N + I)(N + 2), (2.20a) 

~ "'Tr(T)(% % ) = ~ (N + 2)(N + 3) ~ ITr(XI'Xv), 
2! ~ I' v 2 2! p 

for p = 0, 2, and 3, and 

1 IT) - - - -- ITr (XI'X,'xaXp) 
4! p 

= ~ [N 2 + 17N + 54] ~ ITr(XI'XvXaXp) 
2 ~ p 

1 + 3(N + 4) - ITr(X,jXv)Tr(XaXp), 
4! p 

(2.20b) 

(2.20c) 

(2.21) 

for p = 4. Here, the summation over Pstands for p! permuta-
tions of indices ft, v, a, (3, etc. Multiplying gIlv and gIl"A. to 
both sides of Eqs. (2.20b) and (2.20c), respectively, and not­
ing Eq. (1.11), we find 

D I2 )( ITIJ ) = !(N + 2)(N + 3)D I2)(0), 

D (3
)( ITIJ ) = !(N + 3)(N + 6)D I3)(0), 

(2.22a) 

(2.22b) 

where we identified p with the single box 0 and set 

DIP)(O)=DIP)(p). (2,23) 

For p = 4, the situation is slightly more complicated, We 
first note 

(2.24) 

where Po refers hereafter to the adjoint representation of L 
Multiplying gIlvap to both sides of Eq. (2.21) and noting the 
orthogonality relation gIlvaPgl'vgaP = 0 [see Eq. (1.9a)], we 
find then 

D (4)( ITIJ ) = !(N 2 + 17 N + 54)D (4)(0). (2.25) 

We remark that if we had started from the antisymmetric 

representation r = § [as in Eq, (2.16)], all these formulas 

for D 1 P)(r ) and d (r ) will remain the same if we make the 
formal change N-+ - N. As we shall prove shortly, this 
property is always valid for any tableau r and its conjugate 
tableau r *, except for the sign change factor ( - 1)" - I 

where n is defined by Eq, (2,14), Le., n is the total number of 
boxes contained in r. 

Ifwe multiply gIlv~P to both sides ofEq. (2.21), then we 
will obtain a formula for the fourth-order index II Jj (4)(r) cor­
responding to the Casimir invariant (I2f This will be dis­
cussed later. However, we will consider here the index 14(r). 
We restrict Greek indices ft, v, a, (3 in Eq. (2.21) to Cartan 
subalgebra indices i,j, k, 1 with XI' = Hi> Xv = Hj' Xa 
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= H k , and Xp = HI' and multiply ijgkl. Then, we obtain 

14( ITIJ ) = !(N2 + 17N + 54)14(0) 

+ ((r + 2)/r)(N + 4)(/2(Olf, (2.26) 

where ris the rank of L Note that the extra term in the right­
hand side of Eq. (2.26) comes from the second contribution 
on Eq. (2.21), which gives however no contribution to 
D (4)( ITIJ). 

The procedure explained above is applicable to general 
cases, once the character formula is given. First let 

(2.27) 

be the character of the SU(N) group corresponding to a com­
pletely symmetric representation corresponding to 
r = IT IJ (fboxes), If z is an arbitrary real or complex 
variable, then the generating function for X/( U) is well 
known I and is shown as 

Iz'x/(U) = 1 =exp(I ~Tr(UI)). 
J~O det(E - zU) I~ I I 

(2.28) 

For a later purpose we introduce a I( U) which is the charac­
ter of the completely antisymmetric representation of the 
SU(N) group with/boxes in the single column. Then, we 
have analogously 

itO( - 1yz'al (U) = det(E - zU) = exp( - It I ~ Tr(U
I)). 

(2.29) 

Now, the general character X r( U) for a given Young tableau 
r with r = (f1.J2''''/k) is determined from the Weyl's for­
mula l to be 

Xr(U) = det aij' 

where k xk matrix aij (i,j = 1,2, ... ,k) is defined by 

aij = h (fj + i - j) 

(2.30) 

(2,31) 

with the understanding that h (0) = 1 and h (/ ) = 0 for 1 < 0, 
Next, we restrict SU(N) to its subgroup G and we insert 
U = exp X [see Eq. (2.4)] into the right side of (2.30). How­
ever, for the purpose of calculating D (p)(r ) (p;;;. 2), only terms 
containing Tr X P in the expansion are relevant by the ortho­
gonality conditions, Eqs. (1.9), just as the second term in Eq. 
(2.21) did not contribute to the evaluation of D (4) ( ITIJ ) in 
Eq. (2.25). Thus, we expand for p;;;.2, 

h (f) = (N + / - I)! + ~(3IP)(f)Tr XP + .... (2.32) 
/!(N - I)! p! 

Here, we have set 

(3 (P)(f) = f (N + 1- I)! (f - 1'(,-1, 
I~O /l(N - I)! 

(2.33) 

and other terms in the right side ofEq. (2.32) are either those 
involving traces of different powers of X such as Tr X P + I or 
terms involving products of traces such as Tr X 2 Tr X P - 2, 

etc. As we shall see shortly, all these neglected terms are not 
necessary for our consideration. Now, we insert Eq. (2.32) 
into Eq. (2.30). The left side ofXr(U) is again expanded by 
Eq. (2.18). Comparing both sides of coefficients of 
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5'" '5 '"'···5 '"P, we find 

~ ITrirl(X X ... X ) p! p ,", ,", ,"p 

1 
= Q (F) - ITr(X X ···X ) + ... 

P p! p ,", ,", ,"p , 
(2.34) 

where the second term of the right side ofEq. (2.34) contains 
products of traces such as 

Tr(X," , X,", )Tr(X," , ... X/i ). 

etc. Multiplying g""'"P to both sides of Eq. (2.34) and noting 
the orthogonality condition, Eqs. (1. 9), together with the rea­
soning explained in I, only the first term in the right side on 
Eq. (2.34) survives, and we obtain 

DiPI(T) = Qp(F)DiPI(O). (2.35) 

The coefficient Qp (F) can be readily computed as follows. 
We first define k X k matrix A by 

A= (N+i-i+fj-l)! =(N+i-i+fj-l). 
IJ (N - 1 )!(i - i + fj)! N - 1 

(2.36) 

Let Bij be the (i,i) cofactor of the matrix A so that the k X k 
matrix B is given by 

B = (A T) - 1 det A, (2.37) 

where A T is the transpose matrix of A. Then, Qp (F) is now 
calculated by the formula 

k 

Qp(F) = I (JiPI(fj + i - i)Bij' (2.38) 
ij~ 1 

where(JiPI(f) is defined by Eq. (2.33) with (JiPI(f)-O for 
1<0. We also note that the dimension d (F) is given by 

d(F) = detA. (2.39) 

When the Young tableau F is fixed, then Qp (F) as a function 
of N is easily seen from Eqs. (2.33)-(2.38) to be a polynomial 
of N of degree n - 1 with n being given by Eq. (2.14). We also 
remark that we have D iPI(F) = D IPI( pn(F)) = 0 identically 
whenever D i PI( p) = O. Of course, this fact is trivially satis­
fied, if L does not possess pth-order fundamental Casimir 
invariant Jp • At any rate, we rewrite often Eq. (2.35) simply 
as 

Qp(F) = DiPI(F)lDiPI(O) (2.40) 

without cautioning that Eq. (2.40) is really meaningless when 
we have D i PI(O) = O. 

Next, let F * be the Young tableau conjugate to F, i.e., 
the tableau which can be obtained from F by its mirror re­
flection with respect to its diagonal blocks. Then, by Jacobi­
Trudi, as well as Naegelsbach-Kostka identities, 14 we can 
rewrite the character X r* (U) of F * in Eq. (2.30) to be 

Xr*(U) = det a ij , (2.41) 

where k X k matrix aij is defined by 

aij = a(fj + i-i), a(f)-aJ(U) (2.42) 

in terms of a J( U) defined by Eq. (2.29). Then, repeating the 
same procedure as before, we calculate 

Dipi(F*) k 
Q (F*) = = "B·lji'pl

, (2.43) 
P D i pl(O) ij"'= 1 IJ lj 
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d(F*) = detA. (2.44) 

Here, k X k matrix A is defined by 

- N! ( N ) A .. = ---------- = 
lj (fj -i+i)!(N-fj +i-i)! fj -i+i 

(2.45) 

and Bij is (i,i) cofactor of the matrix A. Finally, 

7J VI = 7J I PI(fj + i-i), (2.46a) 

7JiPI(f)= - f N! (-IV-I(f-Iy-I.(2.46b) 
I~O /!(N - /)! 

Comparing Eqs. (2.38) and (2.43) and noting 

(-,) = (_ 1)I(N +: -1), 
we obtain an identity 

Qp(F*,N) = (- lr-IQp(F, - N), 

d(F*,N) = (- l)nd(F, - N), 

(2.47a) 

(2.47b) 

where n is again given by Eq. (2.14) and we wrote Qp(F), etc. 
as Qp (F, N) in order to emphasize its N dependence for a 
given Young tableau r. The validity ofEq. (2.47a) for the 
case of p = 2 and 3 has been noted in Refs. 5 and 7. These are 
also consistent with a theorem ofCvitanovic and Kennedy. 15 

The advantage of using D IPI(F) instead of/p(F) is that 
its calculation is simpler. However, since an extensive table 
of 12 ( p) and 14 ( p) is available, 3 we have computed also the 
expression for 14(F) to be 

'4(F) = Q4(F)/4(O) + ((r + 2)1r)R4(F)(/2(OW, (2.48) 

where Q4(F) is defined by Eq. (2.38) for p = 4, and R4(F) is 
given by 

k (N r i -' 1) R4(F)= I +Jj + J+ Bij 
ij~ 1 N + 3 

+ ± (N + fj, + i l - il)(N + fj, + i2 - i2) 
i, # i, N + 1 N + 1 
j, #j, 

XBi,i,j,j,· (2.49) 

Note that in order to derive this formula, we had to include 
terms proportional to Tr(X,"Xv ) Tr (XaXp) which gives no 
contribution to D IPI(F). Here, Bi"i,j,j, is cofactor of the ma­
trix A corresponding to two elements AiJ, and Ai';, 
(il =/=i2,il =/=i2)' and we have set 

(1\ /! 
j) = i(1 - i)! 

for simplicity. As a function of N for a given F, Q4(F) and 
R 4(F) are readily seen to be polynomials of N of degree, re­
spectively, of n - 1 and n - 2 in agreement with the conclu­
sion of Refs. 6-9. Writing R4(F ) as R4(F, N), we find also 

(2.50) 

as an analog of Eq. (2.47). If we decompose pn(F) as a direct 
sum of irreducible components Pj as in Eq. (1.4), then 14(F) 
satisfies 

(2.51) 

which can be used as a check of Eq. (1.4). 
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In I, we have introduced another fourth-order index 
DI41(p) by 

D 141( p) = b pva/3Tr(XpX vX aX/3)' 

b 1'l'a/3 = ! (gI'vgu/3 + gl'ugv/3 + gI'/3gVU). 

(2.52a) 

(2.52b) 

If F is a direct sum of irreducible components Pi as F 
= I ® Pi' then we have 

j 

DI4J(F) = IDI21(Pi){ DI21 (Pi) _ ~ DI21(po) 1 
i d ( Pi ) 6 d ( Po) J 

= ID I41(Pi)' (2.53) 
i 

where D 141(F) is calculated similarly also as 

DI41(F) = Q4(F)D I41(D) + d~t~~ 2 R4(F)(DI21(D))2. 

(2.54) 
Concluding this section, we may note the following. We 

have already remarked that we have D 1 PI(F) = 0 identically 
for any FifD IPI(p) = D (PI(D) = O. This statement holds val­
id even if P ( = D) is reducible. For p = 3, this fact may have 
the following physical implication, sinceD (31( p) is the anom­
aly coefficiene 6 of the gauge field theory. Suppose that 0 
( = p) corresponds to some fundamental constituent repre­
sentation of, say, preon, or quarks and leptons in any grand 
unified theory such as SU(5) or SO(1O). Then, the renormali­
zability of theory 17 requiresD 131(0) = O. Therefore the conse­
quence D (3J [ pn(F)] = 0 implies also the fact that the effec­
tive Lagrangian field theory for any type of bound states of 
these preons or quark-leptons with the same gauge fields 
must satisfy also the same anomaly-free condition. 

3. SOME EXAMPLES 

In order to make our formulation useful for practical 
problems, we compute here some explicit formulas for Q P(F) 
and R4(F). As we have emphasized already, they depend 
only upon a given Young tableau F and N ( = d (0)) but not 
directly upon the original Lie algebra L. The simplest case is 
for a totally symmetric or totally antisymmetric Young tab­
leau. We adopt here the standard notation 

IT rJ (f times) = ! fl = ! fAd, 

H 
(3.1) 

(3.2) 

Then, we use Eq. (2.38) with k = 1 for Eq. (3.1) and Eq. (2.43) 
with k = 1 for Eq. (3.2). The results are 

Q (A ) =pIPI(f) = _J~I(_ly-l(f_IIP-1 N! 
P J 1~0 I [!(N - l)! ' 

(3.3a) 

Qp(fAI) =/3(PI(f) = Ji\f -Iy-I (N + /- 1)1. 
1=0 !!(N - I)! 

(3.3b) 
Similarly, we calculate 

R (A)- (N-4)! 
4 J - (f-2)!(N-f-2)! 

(3.4a) 

R J1 _ (N + f + I)! 
4ft 1)- (f-2)!(N+3)! (3.4b) 
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The expression for Qp(AJ) may be identified with thepth­
order generalized anomaly coefficient Ap (N,f). Equation 
(3.3a) has been applied to grand unified theory by Frampton 
and Kephares for a study of the fermion family problem in 
particle physics. 

For special cases ofp<;5, we can sum up the expression 
for /3 1 PI(f) to be 

/3121(f (N + f)! 
) = (N + 1 )!(f - I)! ' 

/3(3I(f) = (N + 2f) IN + f)! 
(N + 2)!(f - I)! 

(3.5) 

/3(4)(f) = IN(N - 1) + 6f(N + f)J (N + f)! 
(N + 3)!(f - I)!' 

/3151(f) 

= (N + 2fJlN(N - 5) + 12f(N + fll (N + f)! 
(N + 4)!(f - I)! 

For more detail see the Appendix. Then, the value of 
pi PI(f) can be evaluated from /3 (PI(f) by letting N---+ - N as 
before. The values of QP(A J) for the anti symmetric represen­
tations are evaluated from these to be 

A _ (N-2)! 
Q2( J) - (f - 1 )!(N - f - I)! ' 

Q (A ) - (N 21') (N - 3)! 
3 j - -:I (f _ 1 )!(N - f - I)! ' 

(3.6) 

Q4(Aj) = IN(N + 1) - 6(N - fll (N - 4)! 
(f - 1 )!(N - f - I)! ' 

Q5(Aj) 

= (N - 2fJlN(N + 5) - I2f(N - f)J (N - 5)! , 
(f - I )!(N - f - I)! 

which reproduces, of course, the same results as those direct­
ly computed ll

•
l3 by the formulaD (PI(p) = d (p)Jp(p) for the 

SU(N) group. The results for Qp (A J) (p = 2 and 3), are pre­
viously given in Refs. 8, 9, and 16. 

Here, we present also explicit formulas for Qp (F) 
(p<;4), and R4(F) for cases of n = 2, 3, or 4. 

(1)n=2 

(Ia) F= IT] , 

(lb) 

d(F) = ~N(N + I), R4(F) = 1, 

Qp(F) = N + 2P -
l (p>2). 

F= B, 
d(F) = !N(N - 1), R4(F) = 1, 

Qp(F) = N - 2P -
l (p>2). 
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(2jn=3 

(2a) r = [ill , 

(2b) 

(2c) 

d(r) = f,N(N + I)(N + 2), 

Q2(r) = ~(N + 2)(N + 3), 

Q3(r) = ~(N + 3)(N + 6), 

Q4(r) = ~(N2 + 17N + 54), 

R 4(r) =N +4, 

Qp(r) = !N 2 + HI + 2P ]N + 3P - I (p;;;'2). 

r= § , 
d(r) = f,N(N - I)(N - 2), 

Q2(r) = !(N - 2)(N - 3), 

Q3(r) = !(N - 3)(N - 6), 

Q4(r) = ![N2 - 17N + 54], 

R4(r) =N - 4, 

Qp(r) = ~N2 - HI + 2P ]N + 3P - I (p;;;,2). 

r= EP, 
d(r) = ~ N(N 2 - I), 

Q2(r) = N 2 - 3, 

Q3(r) = N 2 - 9, 

Q4(r) = N 2 - 27, 

R4(r) = 2N, 

Qp(r) = N 2 - 3P - I (p;;;,2). 

(3jn=4 

(3a) r= [li:U , 

(3b) 

(3c) 

2728 

d(r) = f4N(N + I)(N + 2)(N + 3), 

Q2(r) = i (N + 2)(N + 3)(N + 4), 

Q3(r) = i (N + 3)(N + 4)(N + 8), 

Q4(r) = f, (N + 4)(N 2 + 23N + 96), 

R4(r) = !(N + 4)(N + 5). 

d(r) = f4N(N - I)(N - 2)(N - 3), 

Q2(r) = i (N - 2)(N - 3)(N - 4), 

Q3(r) = i (N - 3)(N - 4)(N - 8), 

Q4(r) = f, (N - 4)(N 2 - 23N + 96), 

R 4(r) = ~(N - 4)(N - 5). 

r= EB ' 
d(r) = rzN 2(N 2 

- I), 

Q2(r) = j N(N 2 - 4), 

Q3(r) = ! N(N 2 - 16), 

Q4(r) = ! N(N 2 
- 58), 

R 4(r) = N 2 + 2. 
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(3d) 

(3e) 

r- ilTl - U-' 

d(r)= AN(N-I)(N + I)(N +2), 

Q2(r) = ! (N + 2)(N 2 + N - 4), 

Q3(r) = 1 (N + 4)(N 2 + N - 8), 

Q4(r) = ~ (N + 8)(N 2 + N - 16), 

R 4(r) = !(3N 2 + 9N - 8). 

r= tf, 
d(r) = AN(N - I)(N + I)(N - 2), 

Q2(r) = ~ (N - 2)(N 2 - N - 4), 

Q3(r) = ! (N - 4)(N 2 - N - 8), 

Q4(r) = ! (N - 8)(N 2 - N - 16), 

R4(r) = !(3N 2 
- 9N - 8). 

These reproduce of course the results of Refs. 6 and 7. 
More general formulas will be given in the Appendix. 

We should note that for the G = SU(N) group, the nu­
merical values of '4(0) and '2(0) with the normalization 
specified in Ref. 3 are given by 

(3.7) 

Therefore, '4(r *) for the SU(N) group cannot be obtained 
from 14(r) by simply substituting N---+ - N from '4(r), al­
though Q4(r *) and R4(r *) can be, respectively, obtained 
from Q4(r) and R 4(r) by N---+ - N. This is due to normaliza­
tion condition (3.7), and r = N - 1. 

For a practical application of these results we note the 
following. If r pn(r) is a direct sum of irreducible repre­
sentations Pi as 

(3.8) 

then, we should have 

(3.9a) 

(3.9b) 

(3.9c) 

(3.9d) 

Also, we remark that 12( p) and '2(r) are essentially equiva­
lent to D (2)( p) and D (2)(r), respectively, apart from some 
common normalization constant. Therefore we have 

(3.10) 

Also, the D (3)(r) sum rule is useful only for the case of the 
G = SU(m)group,sinceD(3)(p) = o identically 16 for all other 
simple Lie groups. 

For example, consider the case of G = SOl 10) with 
P = 0 being the 16-dimensional spinor representation. To be 
definite, we choose the highest weight of p to be A 5 , in the 
lexicographical ordering convention of simple root system of 
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Ref. 3. We now want to show the decomposition 

EE = [2A 3] Ell [AI + 2As] Ell [A4 +As] 

Ell [2Ad Ell [OJ, (3.11) 

where [A ] implies the irreducible representation of SOt 10) 
with the highest weight A. As we shall see, the sum rules for 
d (r), Iz(T), and 14 (T) essentially suffice for the establishment 
of Eq. (3.11). For a later purpose, we also note 

Qp( EE)= !N[NZ-I-3(3P-'-2P-')j. (3.12) 

In the present problem we have N = 16 and r = 5. Then, our 
formulas lead to numerical values of 

d( EE ) = 5440, 

12( EEl ) = 26 880, 

14 ( EE) = 170880, 

where we used Iz(D) = Iz(A s) = 20 and Iz(D) = 14(As) = 25 
for Ds from the table of Ref. 3. Then, the validity ofEq. (3.11) 
can be established by noting 

(i) d (p) sum rule (3.9a), 

5440 = 4125 + 1050 + 210 + 54 + 1; 

(ii) Iz( p) sum rule (3.9b)lor p = 2, 

26 880 = 22 000 + 4 200 + 560 + 120 + 0; 

(iii) 14(P) sum rule (3.9b)for p = 4, 

170880 = 148000 + 20 800 + 1760 + 320 + 0, 

again from the table of Ref. 3. However, the solution (3.11) is 
actually not unique, since we could have used the representa­
tion [A I + 2A 4 J instead of[ A I + 2A 5 j, both of which have 
the same values for d (p), Iz( p), and 14( pl. Even the con­
gruence selection rule '9 does not help us to choose one of 
them since both belong to the same congruence class. How­
ever, we could resolve this issue by utilizing the fifth-order 
indicesD (5)( p) whose eigenvalues are given by [see Sec. 4, Eq. 
(4.22)] 

(3.13) 

for any irreducible representation p, where Ij (1 <j<, 5) are 
defined by 

Ij =1; +5-j (1<j<,5), when p=(f,JZJ3J4,f,,). 

Then we calculate 

D (5)( EE ) = 320D (5)(0) 

from Eq. (3.12) and 

D (S)(A, + lA 5) = - D IS)(A, + 2A4) = 320D (5)(0), 

D (5)(0) = D (S)(A 5) = 2 X 9!! 

from Eq. (3.13), while we find 

D (S)(2A 3) = D (S)(A 4 + As) = D (S)(lA ,) = D (5)(0) = 0 

when we note 15 = Is = 0 for these irreducible representa­
tions. Then, the sum rule (3.9c) for p = 5 can be satisfied for 
the present problem only by the solution (3.11). Similarly, we 
can verify the validity ofEqs. (1.3) by the same technique. 
Our results agree with those given by Schellekens et al. 7 who 
have also studied many decompositions of this kind up to 
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n = 5 by using both 12(p) and 14(p) sum rules but not the 
D (5)( p) sum rule. For more complicated Young tableaux, the 
use of higher-order indices is expected to be more useful. 

As we emphasized in the Introduction, the reason for 
our special choice of L = Ds with p = [A 5] here is motivat­
ed for its potential relevance to the grand unified theory.4 
However, many other Lie algebras such as E6 could also be 
potential candidates for GUT. Schellekens et al.20 as well as 
Tosa and Marshak21 have studied such problems for possible 
applications to preon models in elementary particle physics. 

4. FORMULA FOR GENERAL INDICES 

In order to apply our formalism to practical problems, 
it is necessary to know the explicit form of D IPI(p). Formulas 
for Jp ( p) withp<,4 have been given in Ref. 13, whileJs(p) has 
been evaluated in Ref. 11. From these, we can calculate 
DIPI(p) = Jp(p)d(p) forp<,5. However, the method utilized 
in these papers is not suitable for general evaluation of 
D I P)( p). We shall show that we can find a general formula of 
D I PI( p) for any simple classical Lie algebra L. 

For the G = SU(N) groupcorrespondingtoL = A N _ I' 

we observe first that pn(T) will be irreducible if we choose p 
to be the N-dimensional basic (or defining) representation of 
SU(N). Therefore, the general formula for D I P)(T) corre­
sponding to the irreducible representation [r ] of the SU(N) 
group is simply given by Eqs. (2.35)-(2.38), by choosing 0 to 
be the basic representation with d (D) = N. 

The same reasoning is, however, not directly applicable 
to other classical groups Sp(2N), SO(2N), and SO(2N + 1), 
since p"(r) will not be in general irreducible even for p being 
the defining representation of these groups. Nevertheless, we 
can circumvent this and proceed as follows. In order to avoid 
possible confusion, we simply ignore the construction of 
pn(T), and assume hereafter p to be a generic irreducible 
tensor representation of these classical Lie groups, with 
Young tableau specified by the integers satisfying 

(4.1) 

We may omitlk and replace k by k - 1, iflk = O. We also 
change the meaning and notation of r so that r now signifies 
the Young tableau (f,,f;, ... Jk) associated with the irreduci­
ble representation p. Let us first consider the case of the 
Sp(2N) group. Since the basic (or defining) representation of 
Sp(2N) is 2N dimensional, the matrix U discussed in Sec. 2 is 
now 2N dimensional. We define h (I) = XI( U) again by Eq. 
(2.28). Then, the character formulas for the irreducible re­
presentation p is now given by the Weyl's formula' 

Xp(U) =! det alj' (4.2) 

where k X k matrix alj is defined by 

aij = h (f; + i - j) + h (f; - i - j + 2). (4.3) 

Note that in order to avoid possible confusion, we used the 
notationxp(U) in Eq. (4.2) instead ofXr(U) of Sec. 2. Never­
theless, we can utilize exactly the same procedure of Sec. 2 
for evaluation of D (P)( p), once the character formula Eq. 
(4.2) is known. We define the k X k matrix A now by 

_ (2N + f; + i - j) (2N + f; - i - j + 2) 
A,) - 2N + 2N . (4.4) 
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Let BI} be similarly (i,)) cofactor of the matrix A so that 

B=(AT)-'detA, (4.5) 

again in the matrix notation. We now set 

(3 I pi (f) = ±CN+/-l)(f-IY I (4.6) 
I~O 

and 

rlfl = (3 IPV; + i -)) + (3 I PV; - i -) + 2). (4.7) 

Note that (3 I PI(f) given by Eq. (4.6) is the same as in Eq. (2.33) 
if we let N~2N. We now find 

D I pl( p) = Qp (p)D I pl(O), 

1 k 

Qp(p) = 2 iJ2:IBl}rJl, 

(4.8) 

(4.9) 

where 0 is now the 2N-dimensional basic (or defining) repre­
sentation ofSp(2N). We also have 

dip) =! detA. (4.10) 

We next consider the case of the SO(2N + 1) group, 
corresponding to the Lie algebra BN • We first restrict our­
selves to the irreducible tensor representation p with the 
Young tableaur = (f1,. . .Jk) satisfying Eq. (4.1). The matrix 
U of Sec. 2 is now chosen to be a (2N + 1 i-dimensional basic 
representation. The character formula for this case is given 
by'·22 

Xp(U)=!deta ij , (4.11) 

au = h (J; + i -)) + h (J; - i -) + 2) 

- h (J; + i - ) - 2) - h (J; - i - i), (4.12) 

The corresponding k X k matrix A is expressed now as 

A .. = (2N + J; + i - )) _ (2N + J; - i - )) 
I} 2N 2N 

(
2N + J; - i - ) + 2) _ (2N + J; + i -- ) - 2), 

+ 2N 2N 
(4.13) 

while BI} is again defined as (i,)) cofactor of the matrix A. 
Also, setting 

rJl = (3I PI(J; + i -)) + (3IPI(J; - i -) + 2) 

_(3IPI(J; -i-))_(3IPI(J; +i-)-2), (4.14) 

(3 I PI(f) = ±CNI+)(f-IY- ', (4.15) 
I~O 

we find the validity ofEqs. (4.8) and (4.9) again for the case of 
SO(2N + 1). We can generalize our formulas for spin or re­
presentations as follows. The most general irreducible repre­
sentation of the Lie algebra B N is well known to be charac­
terized by N nonnegative numbersJ; satisfying 

(4.16) 

The tensor representations correspond to the case when allJ; 
are nonnegative integers. Also, if we havefk + I = fk + 2 = ... 

= j,v = 0, then we may simply drop all these extra symbols 
J; (k + 1 <J<N) as in Eq. (4.1). However, we have to use posi-

J •• 

tive half-integer values for J; for spmor representatlOns, so 
that we must always set k = N for such cases. Regardless, we 
generally define Ij by 

Ij = J; + N + ! -) (4.17) 
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for 1 <J<N. It is known that the dimensional formula for 
d (p) is a completely antisymmetric polynomial Of/I' 12, ... ,(v' 
Similarly, from explicit formulas of non symmetrized Casi­
mir invariants I~N.sl( p) calculated by many authors,23-26 we 
can show27 that the 2pth-order Casimir invariant J2p ( p) is a 
totally symmetric pth-order polynomial of I ~ , I ~ , ... , I ~. 
Since this fact holds valid irrespective of whether p is a tensor 
or spinor representation of BN , and since Qp(p) in Eq. (4.9) 
can be rewritten as antisymmetric polynomials of II' 12, ... ,lN 
for k = N, we conclude that formulas (4.8)-(4.10) must also 
be valid for all these cases if we set k = N. 

The case of the SO(2N) group corresponding to the Lie 
algebra D N is slightly more involved. Any irreducible repre­
sentation p of DN is characterized by N real numbers 
flJ2, ... JN satisfying now 

(4.18) 

where theJ; are simultaneously either all integers or all half­
integers, depending upon the tensor or spinor representa­
tions. Also, iffN #0, we have to distinguish two distinct irre­
ducible representations corresponding to 

p = (fIJ2''''/V - I,fV)' 
(4.19) 

Now, the Lie algebra D N possesses N fundamental Casimir 
invariants26 which can be classified into two classes. The first 
class may be called regular ones with Casimir invariants 
J 2 , J 4 , ... , J 2N _ 2' while the sec~nd one consists of one N th­
order invariant we specify by J N' When we set 

(4.20) 

for 1 <J<N, then eigenvaluesJ2p (p) (l<p<N - 1) of the re­
gular class Casimir invariants arepth-order symmetric poly­
nomials27 of I ~ , I ~ , ... , I~, while we have 13,23,24,26 

IN(p) = IJ2, .. IN . (4.21) 

Therefore, the N th -order index D IN I( p) corresponding to IN 

is simply given II by 

(4.22) 

The special case of N = 5 reproduces the result ofEq. (3.13), 
although we changed the notation there simply as D (51( pl. 
Noting ll\[ = lv, we also see that we have 

DINI(p') = _DINI(p) (4.23) 

for two irreducible representations p and p' given by Eq. 
(4.19). Contrarily, we have 

D I PI( p') = D I PI( p) (4.24) 

for the regular class indices. 
In view of Eqs. (4.23) and (4.24) it suffices to consider 

only the cases offN >0 for the regular indices D I pl( p). Again, 
first consider the case of tensor representations with Young 
tableau (4.1). The character formula for the SO(2N) group for 
this case is then exactly the same1

,22 as for the SO(2N + 1) 
except for the face that U is now a 2N X 2N defining repre­
sentation of the SO(2N). Therefore, for a fixed Young tableau 
r = (flJ2, ... jk) with a fixed value of k, the formula for 
D IPI( p) remains exactly the same and is given by Eqs. (4.8) 
and (4.9) except that we have to replace 2Nby 2N - 1 in Eqs. 
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(4.13)-(4.15). Note that this replacement is consistent also 
from the transition of lj defined by Eq. (4.17) to that of Eq. 
(4.20). Once we have shown this, the general case involving 
the spinor representations can be dealt with just as in the 
SO(2N + 1) case, simply by setting k = N in the formula 
thus obtained. We should remark that the replacement of N 
by N - ~ from the SO(2N + 1) to SO(2N) group should be 
made before we set k = N. Otherwise, we will obtain incor­
rect results. We can verify these facts more directly for di­
mensional formula of d (p) as well as for explicit formula of 
J 2( p) and J4 ( p) given in Ref. 13. 

For the SO(2N) group, we note D (N I(D) = 0 for the basic 
representation D. Also, we shall give here expressions of 
D (PI(Af ) and D (PI(fA d ofSO(2N), corresponding to totally 
antisymmetric and totally symmetric irreducible representa­
tions to be 

Qp(fAd = JJeN +/ - 1) - eNI~/2- 3)}(f -1)"- I, 

Qp(Af) = -,to(-I)f-'e0(f-I),,-I, 

whereDiPI(p) = Qp(p)DIPI(D), again. 

5. SIXTH-ORDER INDEX 

(4.25a) 

(4.25b) 

We have computed D I PI( p) for all simple classical Lie 
algebrasA N , BN, CN' and DN in the previous section. Unfor­
tunately, the same technique used there is not applicable to 
five exceptional Lie algebras G2 , F4 , E 6 , E 7 , and Ex, since 
analogous simple characteristic formulas for these algebras 
are not a vailable. We know that all these Lie algebras possess 
nontrivial second-order index D 121( pI, but not the fourth-or­
der one D 141( pl. E6 alone has nonzero fifth-order index 
D (SI( p) which can be computed as in I. The next higher sixth­
order index D 161( p) is however nontrivial for G2 , F4 , E6 , and 
E7 but not for E8 • It is of some interest both theoretically and 
practically to evaluate D (6)( p) for these algebras. For this 
purpose, we have to utilize the method given in Refs. 13 and 
I. Below, we shall sketch a procedure which will enable us to 
compute D 161( p). As a by-product, we find a sixth-order trace 
identity for those algebras. 

Let p be a generic irreducible representation of a simple 
Lie algebra L. 

LetA be the reference representation13•26 which we may 
identify with the lowest-dimensional basic representation of 
L. Let x" be the representation matrix of the basis t" of Lin 
the representation A, and set 

1 
h", ... " = - I Tr(x" x". "·X" ) 

p p! p ,. p 

as in I with normalization condition 13 

g"v = hI'" = Tr(x"xv )' 

(5.1) 

(5.2) 

Then, a pth-order Casimir invariant Ip (p) can be defined by 

I ( ) = h """"·""X X .. ·X 
P P ", ", "p' (5.3) 

where X" is the representation matrix of tp in p. Hereafter, 
we assume for simplicity that the algebra L is not of type AN 
(N)2). We can construct the sixth-order fundamental Casi-
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mir invariant J6 ( p) as follows. First we set 

1 { d ( Po) 1 D (ZI( Po) 
S(p)= 8+d(po) dIp) -"3 D(2)(p) 

1 D(41(Po)} 
+ 30 D(41(p) , (5.4) 

1 {[ d(po) ]2 1 d(po) DIZI(po) 
T(p) = 4 + d(po) dip) - '2 dip) D(2)(p) 

_1_ [ D (2)( Po) ] 2} 5 5 + 12 D 121( p) , ( . ) 

and moreover, define 

(5.6) 

(5.7) 

where Po is again the adjoint representation of L. 
Here, the summation is over all 6! permutations P of six 

indices,u, v,A, a,p, and rso that the right sides of both Eqs. 
(5.6) and (5.7) consist of 15 different terms. The explicit form 
of g;"a/3y is found in Ref. 13. We now set for any simple Lie 
algebra other than the type AN (N) 2), 

g"vlca/3y = [2 + d(po)]h"v;"a/3y 

- S(A )apv;"a/3y - T(A )bp l'l..a/3Y' (5.8) 

which can be shown to satisfy the orthogonality condition 
(1.9c). Then, the sixth-order fundamental Casimir invariant 
J6(p) is now given by 

J6(p) =,g'"';"a/3YX"X"X;"XaX/3Xy ' (5.9) 

LetXbe as in Eq. (2.2). Then, following the procedure of Ref. 
13, we can prove the sixth-order trace identity 

[2 + d(po)]Tr X 6 
- 15[2 + d (po)]S(p)fTr X 4 

- K(p)(Tr X 2fJTr X 2 
- 15T(p)(Tr X2)3 

= C6(t)D (61( p) (5.10) 

for any simple Lie algebra other than AN (N)2), D4 and D 6, 

where C6 (t ) depends upon the generic element tEL but not 
uponp. Also, we have set 13,28 

K(p) = 1 {6 d(po) _ D(21(po)}. (5.11) 
2(2 + d (Po)) d (p) D 121(p) 

We now restrict ourselves to Lie algebras A l' G2 , F4 , E6 , E 7, 

and Ex, where we have identity28 

Tr X 4 
- K(p)(Tr X2)2 = O. (5.12) 

Of course this fact is related 13 to identical vanishing of 
D 141( p) for these algebras. At any rate we then have 

[2 + d(po)]Tr X 6 
- 15T(p)(Tr X2)3 = C6(t )D I61(p) 

(5.13) 
for all these Lie algebras. Correspondingly, 13 we define /6( p) 
by 

/6(P)=/6(P)- T(p) (r+2~+4) [/2(P)F, 
2 + d(po) 

(5.14) 

where ris the rank ofL and 12p( p) is defined by Eq. (1.14), i.e., 

12P (p) = I(M, MY. (5.15) 
M 
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Following the same reasoning given in Ref. 13 to establish 
the relationship between 14( p) and D (41( p), we can now find 

16(p) = constXD6(p). (5.16) 

Expressing T(p) in terms of 12(p), we can rewrite 16(p) as 

16(p) = 16(P) 

Therefore, if we compute 16( p) by Eq. (5.17), we can then 
numerically evaluate D6( p) apart from the normalization 
constant for exceptional Lie algebras G2 , F4 , E6 , and E7 . Sim­
ilarly, let ~ U = 1,2, ... , r) be elements of a Cartan subalge­
bra of L, and let vi U = 1,2, ... , r) be an arbitrary but fixed 
vector in the root space. If we choose 

in Eq. (5.13), it gives 

[2 + d (Po)]1 ~(p) - 15T(p) [I; (p)] 3 = constXD i61(p), 
(5.18) 

where we have set6 

(5.19) 

as in I. From Eqs. (5.18) and (5.19) we may numerically com­
pute D 161( p) again. 

For Lie algebras A. and E 8 , both 16( p) and D 161( p) 
should be identically zero, since these possess no fundamen­
tal sixth-order Casimir invariants.· 2 Especially Eq. (5.13) re­
quires the validity of 

[2 + d(po)]Tr Xl> - 15T(p)(Tr X2f = 0 (5.20) 

for any generic element X of A. and E8.For A., the relation 
Eq. (5.20) or 16(p) = 0 gives an identity 

t m 6 = _I_ jU + I)(2} + l)PUU + IW 
m = _j 21 

-3j(j+I)+1l. (5.21) 

for all positive integer and half-integer values of}, i.e., for 
j =!, 1, ~,2, .... Equation (5.21) can be more directly veri­
fied. We remark that the validity ofEq. (5.20) for E8 has been 
previously noted elsewhere. 29 

The numerical evaluation Orl6( p) and hence of D 161( p) 
for G2 , F4 , E6 , and E7 will be reported elsewhere. 

Note added in proof After this paper had been complet­
ed, it came to our attention that there are additional refer­
ences which are also of some relevance to the subject matter 
of this paper. 30-35 The present authors would like to express 
our gratitude to Professor R. C. King for calling our atten­
tion to these references. 
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APPENDIX 

Here, we shall give formulas for d (r), Qp (F), and R 4(F) 
of Sec. 2, when we have k = 2 with r being specified by two 
integers II and/2 satisfying 

1.>/2>0. (AI) 

It is convenient to set 

BI =1. + 1, B2 = 12' (A2) 

Then, from Eqs. (2.36)-(2.39), we calculate 

d(r) = (B _ B) (N + BI - 2)!(N + B2 - 2)! (A3) 
I 2 (N _ l)!(N - 2)!B.!B2! ' 

Q (F) = 1 { (N + BI - 2)! [JIPI(B ) 
P (N-I)! (BI-I)! 2 

(N + ;.\ - I)! (3IPi(B2 _ 1) 

+ (N + B2 - I)! [JIPi(B _ 1) 
B I I 

2' 

_ (N + B2 - 2)! [JIPI(B )} (A4) 
(B2-1)! ., 

___ 1 ___ (N + 8.J!(N + 82 - 2)! R 4 (r) = 
(N + 3)!(N - I)! (81 - 2)!82! 

X ((N - I)(B. - 2) - (N + 3)82 J 

+ 1 (N + BI - 2)!(N + ( 2)! 
(N + 3)!(N - I)! 81!(82 - 2)! 

X ((N + 3)8. - (N - 1)(82 - 2)J 

+ 2(B _ 8) (N + 8. - 1)!(N + 82 - I)! (AS) 
• 2 N!(N + I)!(81 - 1)!(B2 - I)! 

which are odd functions of 01 and O2 when we interchange 
them. Then, all formulas of Sec. 2 can be obtained as special 
cases of these formulas when we also utilize Eqs. (2.47) and 
(2.50). Especially for II = I and/2 = 1, we calculate 

(N+I)l 2 

R 4(J,I) = (N + 3)!(f _ 1)1 (IN 

+ (f2 - 21 + 6)N - (f + 5)(f - 2)J, (A6) 

Q (J,I) = (N + I-I)! + N(3IPI(f) - [JiPI(f + 1) 
P' (N - I)lfl 

=N (N+I-2)1 -(f+ 1)1'-1 
(f - I)l(N - 1)1 

+ If (N + 1- 1)1 l(f -1'1"-., (A7) 
1= 1 (l + I)!(N - 2)! 

which for example gives for I = 3, 

Qp(3,I) = !(N + 2P-I)(N 2 + N - 2P). 

The function[J 1 pl(f) defined by Eq. (2.33) may be rewritten as 

[JiPI(f) = :t:a\p{N + P;! ~ /- 1). (A8) 

(A9) 
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where alP) (p>2) are determined by the generating function 
of the form 

p-I dp-II I a\p)zl = (1 - zY'(z - ) --
1=1 dz I-z 

= (1 - zY' I,lP-IZI. (AW) 
1=0 

For p<.5, Eqs. (A8) and (AW) lead to Eq. (3.5), while for 
p = 6 and 7, we compute 

p = 6: a\6) = a~6) = 1, 

a~6) = a~6) = 26, 

a~6) =.66, 

p = 7: a (
1
7

) = a~1 = 1, 

(All) 

a~1 = a~71 = 57, (AI2) 

a~1 = ar) = 302. 

Using the formulas given here together with Eqs. (2.47) and 
(2.S0), we can compute all Qp [p5(F)] and R4[p5(F)] for 
n = S except for the Young tableau Fo specified by 

Fo = ~, II = 3, 12 =/3 = 1. (AI3) 

Because of this, we also calculate here the corresponding 
formulas for this case to be 

d(Fo) = ioN(N2-I)(N2-4), 

Q2(Fo) = i (N 2 - 4)(N 2 - S), 

Q3(Fo) = ! (N 4 - 17N 2 + 100), 

Q4(Fo) = ! (N 4 - 33N 2 + SOO), 

R4(Fo) = N(N 2 - 12). 

(AI4) 

(AIS) 

(AI6) 

(AI7) 

(AI8) 

Finally, we shall make a comment on the Clebsch-Gor­
dan decomposition. Let P A and P B be two representations of 
L and suppose that the product representationpA ®PB will 
decompose as 

(AI9) 

of a sum of representations Pj' We have shown in I that we 
have the sum rules 

as well as 

d (PA)15 (41(PB) + d (PB)15 (41(PA) 

+ 2 d~t~: 2 D(21(PA)D(21(PB) = ~15(41(pj)' (A2I) 

where15(41(p) is defined by Eq. (2.S3). We now consider the 
case of the G = SU(N) group, and apply the results of Sec. 2 
to Eqs. (A20) (withp = 4) and (A2I). Also, in conformity 
with the notation of Sec. 2, we use Young tableau symbols 
FA' F B' and Fj for corresponding irreducible representa­
tionsPA ,PB' andpj' respectively, of the SU(N) group. In this 
way, we find the sum rule 

d(FA)R4(FB) + d(FB)R4(FA) + 2Q2(FA)Q2(FB) = I R 4(Fj) 
j 

(A22) 

for the Clebsch-Gordan decomposition of the product of the 
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Young tableaux FA and F B' 

(A23) 
j 

oftheSU(N) group. NotingR4(D) = OandQ2(D) = 1, we can 
calculate R4(F) for many F by repeated uses of Eq. (A22) 
from some known values of R4(F A ) and R4(F B)' Also, Eq. 
(A22) may be used as a check for the validity of the correct 
Clebsch-Gordan decomposition, Eq. (A23). Similarly, for 
any p satisfying N>p, we must have 

(A24) 
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Lie algebraic methods are developed to describe the behavior of trajectories near a given trajectory 
for general Hamiltonian systems. A procedure is presented for the computation of nonlinear 
effects of arbitrarily high degree, and explicit formulas are given through effects of degree 5. 
Expected applications include accelerator design, charged particle beam and light optics, other 
problems in the general area of nonlinear dynamics, and, perhaps, with suitable modification, the 
area of S-matrix expansions in quantum field theory. 
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1. INTRODUCTION 

In many cases one knows a particular trajectory for a 
Hamiltonian system, and wishes to find the behavior, both 
linear and nonlinear, of trajectories near this known trajec­
tory. For example, one knows the central design trajectory 
for an accelerator, and wishes to obtain information about 
the trajectories near the design trajectory.J Similarly, in the 
field oflight optics (as well as charged particle beam optics) 
one knows the path of the axial ray, and wishes to character­
ize the behavior of rays near the axial ray.2 Our purpose is to 
indicate how this problem can be treated with the aid of Lie 
algebraic methods. We expect that our results will have im­
portant applications both in accelerator design and optics, 
and in the general area of nonlinear dynamics. With suitable 
modification, there may also be useful applications in the 
area of S-matrix expansions in quantum field theory. 

2. PRELIMINARY CALCULATIONS 

To set the stage for further discussion, consider Hamil­
tonian motion in a 2n-dimensional phase space with general­
ized coordinates q J ... q n and generalized momenta p J'''P n' It 
is convenient to treat these quantities together by the intro­
duction of a 2n-vector z having the q's and p's as compo­
nents, 

(2.1) 

In this notation, we wish to deal with motion described by 
some Hamiltonian H (z, t ). 

Now suppose that zg(t) is some given trajectory, which 
is assumed to be known, and that our task is to characterize 
all trajectories near z g. Introduce 2n new variables {; by the 
rule 

(2.2) 

The transformation (2.2) is canonical. Consequently, the 
time evolution of the new variables {; will also be described by 

,,' From a dissertation to be submitted to the Graduate School, University of 
Maryland, by Etienne Forest in partial fulfillment of the requirements for 
the Ph.D. degree in Physics. 

blWork supported in part by Department of Energy Contract AS05-
80ERJ0666. 

clWork also supported in part by National Sciences and Engineering Re­
search Council of Canada. 

some Hamiltonian. Call this Hamiltonian H newt (;, t ). Evi­
dently, the problem of studying trajectories near z g is equiva­
lent to studying the trajectories governed by H newt (;, t) in 
the case where {; is small. 

What is the relation between H (z, t) and H newt (;, t )? 
Suppose that the quantity H (zg(t) + (;, t) is expressed as a 
power series in (; by writing the expansion 

~ 

H (Z8(t) + (;, t) = I Hm { (;, t). (2.3) 
m =0 

Here each quantity Hm ( (;, t) is a homogeneous polynomial 
of degree m in the components of {;. Then it is easily verified 
that H newt (;, t) is given by the expression 

oc 

Hnew( (;, t) = I Hm( (;, t). (2.4) 
In --'--- 2 

3. LIE ALGEBRAIC TOOLS 

The purpose of this section is to present a brief sum­
mary of the Lie algebraic tools and concepts required for our 
purpose. A more complete discussion may be found else­
where. 1,3 

To begin, let/be a specified function on phase space, 
and let g be any function. Associated with each/is a Lie 
operator that acts on general functions g. The Lie operator 
associated with the function/ will be denoted by the symbols 
:f, and is defined by the rule 

:fg= [J,g]. (3.1) 

Here the square bracket [ , ] denotes the familiar Poisson 
bracket operation of classical mechanics. 

Let the symbols I :f,: g:) denote the commutator of 
two Lie operators :f and: g:, 

f'f .g.] -'f 'g' ·g··f t· '" . - ... ,-, " .. (3.2) 

Then it can be shown from the Jacobi identity for Poisson 
brackets that one has the relation 

I :f,: g:] = :[J, g]:. (3.3) 

That is, the commutator of two Lie operators is again a Lie 
operator, and this Lie operator can be calculated in terms of 
a Poisson bracket. This fact will be essential for later discus­
sion. 

Next consider the object exp(:f), called a Lie trans/or-
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mation, and defined by the exponential series 

exp(:f) = f :fm. 
m~O m! 

(3.4) 

More explicitly, the action of exp(:f) on any function g is 
given by the expression 

exp(:f) g = g + [f, g] + [f,[f, g]]/2! + ... . (3.5) 

Now consider all phase-space trajectories generated by 
the Hamiltonian (2.4) that start at some initial time t in and 
end at somefinal time t fin. Let; in denote an initial condition 
at the initial time t in, and suppose the trajectory with this 
initial condition arrives at the point; fin at the final time t fin. 
Evidently, this following of trajectories assigns to each; in a 
unique; fin. Equivalently, we say that the Hamiltonian (2.4) 
gives rise to a mapping .II (in general nonlinear) with the 
property 

; fin = .II; in. (3.6) 

Observe that, by construction, ; = 0 is a trajectory. It 
follows that.ll maps the origin of phase space into itself. In 
this circumstance, there is alactorization theorem which 
shows that .II can be written as an infinite product of Lie 
transformations in the form4 

.II = ... exp(:fs:) exp(:h:) exp(:/3:) exp(:f2:)' (3.7) 

Here each function/m is a homogeneous polynomial of de­
gree m in the variables; in. 

Evidently, a knowledge of.ll is equivalent to a know­
ledge of the trajectories generated by the Hamiltonian (2.4). 
And, according to (3.7), a knowledge of.ll amounts to deter­
mining certain homogeneous polynomials/2,/3,h, etc. 

With this brief background, we can be more specific 
about the contents of the remaining sections of this paper. 
Our aim is to derive explicit formulas for the polynomials/2, 
13' etc., that characterize.ll in terms of the polynomials H 2, 

H 3 , etc., that characterize H new. 5 Sections 4-9 and an appen­
dix develop various mathematical tools. Formulas fori, and 
14 are given in Sec. 10, and formulas for Is and/6, as well as 
additional tools of use for the general case, are given in Secs. 
11 and 12. 

4. EQUATION OF MOTION FOR .II 

For ease of notation, we will henceforth drop the super­
script "new" and simply write H for H new( ;, t ). Also, we 
will view t fin as a variable time, and simply refer to it as the 
time t. Thus, we write (3.6) in the form 

(4.1) 

Supposeg is any function on phase space. Then, because 
.II is a product of Lie transformations, it can be shown that 
.II has the property 1,3 

g( ; ) = g(.II; in) = .II g( ; in). (4.2) 

Now take the time derivative (along a trajectory) of both 
sides of (4.2) to obtain the relation 

(4.3) 

From the equations of motion it follows that g is given 
also by the Poisson bracket equation 
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g(;) = [g( ;), H(;, t)]. (4.4) 

Manipulate the right-hand side of (4.4) to obtain the relation 

[g( ;), H(;, t)] = [g(.II;in), H (.II; in, t)] 

= [.~g(; in), ~&' H( Sin, t)] 

= ~&' [ g( ; in), H ( ; in, t )] 

= c&'[ - H( Sin, t), g( Sin)] 

= c/&': - H( Sin, t): g( ;ill). (4.5) 

Here use has been made of the further property of .II that it 
can be taken outside a Poisson bracket. 1.3 

Now compare Eqs. (4.3)-(4.5). One finds the result 

(4.6) 

Since the function g is arbitrary, it follows that u&' obeys the 
equation of motion 

(4.7) 

5. SOLUTION IN THE COMMUTING CASE 

Suppose the time interval (t in, t fin) is divided into N 
equal subintervals of duration Lit. Introduce intermediate 
times t 1m) by the rules 

tim) = tin + mLit, m = 0, 1, ... N, 

tlO) = tin, tiN) = tfin. 

Also, introduce the shorthand notation 

Him) = H( Sin, t lml). 

(5.la) 

(5.lb) 

(5.2) 

Then, to lowest order in Lit, a Taylor expansion gives the 
result 

.II(t 1m + I)) = cU'(t 1m) + Lit) = .II(t Iml) + 1(t 1m)) Lit 

= .II(t 1m)) + .II(t 1m)): - H 1m): Lit 

= .II(t Im))(f + : - H 1
m

): Lit) 

= .II(t lm )) exp(: - Him): Lit). (5.3) 

Here f denotes the identity operator, and use has been 
made of the equation of motion (4.7). 

Equation (5.3) can be solved sequentially to give the 
result 

o/&'(t IN)) = c~(t 10)) exp(: - H 10): Lit) exp(: - H(I): Lit) 

x ... exp(: - HIIV - II: Lit). (5.4) 

Thus, in view of (5.lb) and the fact that .II(t in) must be the 
identity operator f, we have to lowest order inLit the formal 
solution 

.II = exp(: - H(O): Lit) exp(: - H(!): Lit) 

... exp(: - H IN - I): Lit). (5.5) 

At this point it is possible to make two observations. 
First, suppose that for any two times t ' and t " the Hamilton­
ian H has the commuting property 

!: H( sin, t '):,: H( Sin, t "): l = 0, 

or, equivalently, in view of (3.3), the property 

[H( Sin, t '), H( Sin, t ")] = O. 
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[Note that (5.7) will certainly be satisfied if H is time-inde­
pendent.] Then the various exponents in (5.5) all commute, 
and therefore can be combined into one grand exponent to 
give, to lowest order in Llt, the result 

.AI = exp(: - H(O): Llt + : - H(1): Llt 

+ ... +: _HIN-I): Llt). (5.8) 

Upon taking the limits N _ 00, Ll t _ 0, we obtain the exact 
result 

JI = exp( - : JI H ( (; In, t ') dt ':) . 
,In 

(5.9) 

Here we have again followed our convention of viewing t fin 

as a variable time, and simply referring to it as the time t. 
Note that the correctness of (5.9) can also be checked direct­
ly, by simple differentiation with the aid of (5.6), to repro­
duce the equation of motion (4.7). 

The second observation concerns the general noncom­
muting case. In this case too, by means of the Campbell­
Baker-Hausdorff formula for manipulating noncommuting 
exponents, it is in principle possible to combine the various 
exponents in (5.4).3 If this were done, the result would in 
general involve the various Lie operators: - Him): and all 
their various (multiple) commutators. That is, according to 
the Campbell-Baker-Hausdorff formula, products of Lie 
operators would occur only in the form of commutators. A 
direct calculation at this point is too awkward to carry out 
with our present tools. Subsequent sections will be devoted 
to the development of further tools, and the eventual treat­
ment of the general noncommuting case. It is sufficient to 
observe here that the general case will involve (and only in­
volve) exponentials of operators which are linear combina­
tions of the operators: - H ( (; In, t '): at various times t' and 
their multiple commutators. 

Let us return, for the moment, to the commuting case. 
Suppose, as assumed, that H has the form (2.4). Then its 
integral can be written in the form 

(5.10) 

where the quantities hm are homogeneous polynomials of 
degree m in the variables (; in. Consequently,.AI in the com­
muting case has the form 

(5.11) 

According to Sec. 3, our problem is to write JI in the 
factored product form (3.7). That is, we need to reexpress 
(5.11) in the form (3.7). This too can be carried out with the 
aid of the Campbell-Baker-Hausdorffformula. A complete 
explicit solution for thef's in terms of the h 's has been given, 
and it has been used extensively in the construction of the Lie 
algebraic computer code MARYLIE, designed for the compu­
tation of charged particle beam transport. 6

•
7 We will not 

elaborate further on specific results here because they will 
turn out to be a special instance of the general case to be 
treated in subsequent sections. 
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6. THE INTERACTION PICTURE 

The discussion of the noncommutative case is facilitat­
ed by the introduction of an "interaction picture" similar to 
that employed in quantum mechanical calculations.8 

According to (3.7), the map JI can be written in the 
factored product form 

.1( = ... j( 5.Al4.Al3J1 2 = .AI R JI 2' (6.1 ) 

where each factor vI( m is given by the expression 

.. 11 m = exp(:fm :). (6.2) 

Also, (2.4) states that H decomposes into a sum ofhomogen­
eous polynomials, 

(6.3) 

Here, as in (6.1), we use the subscript "R " to denote "remain­
ing" terms. 

Differentiating (6.1) gives the result 

. .11 = .. .II R'.li z + vii R.lf 2' (6.4) 

Now combine the equation of motion (4.7), the decomposi­
tions (6.1) and (6.3), and the relation (6.4) to obtain the result 

'§R.1i2 +.AI Rj/2 = j( R.1I2: - H2 - H R: 

= .. 11 Rv·1(2: - Hz: +.11 R.1I2: - H R:· 
(6.5) 

Suppose, as will later be shown to be consistent, that .Al2 is 
required to satisfy the equation 

j( 2 = JI 2: - H 2:· (6.6) 

It then follows from (6.5) and (6.6) that vii R obeys the equa­
tion 

.AI Rvl( 2 = JI RJI 2: - H R :, 

or, equivalently, 

(6.7) 

.// R =.AI Rj( 2: - H R : .Alz- I. (6.8) 

The quantity JI 2: - H R: JI 2- 1 occurring on the right­
hand side of(6.8) can be simplified. We claim that 

(6.9) 

where the "interaction" Hamiltonian H1t is given by the 
expression 

H;"( (;in, t) = .Alz H R ( (;in, t) = HR(Jl2 (;in, t). (6.10) 

If Eqs. (6.9) and (6.10) are accepted, then the equation of 
motion for JI R takes the final form 

. .Ii R = j( R: - H~':. (6.11 ) 

The verification of Eqs. (6.9) and (6.10) is straightfor­
ward, based on previously mentioned properties of Lie trans­
formations. Suppose j( is a Lie transformation, and letf and 
g be any two functions. Then one has the relation 

.11:/: JI-Ig = .AI[J, JI-I g] 

= [JlJ,JlJI-1g] 

= [JlJ, g) = : Jlf:g· (6.12) 

Since the function g is arbitrary, (6.12) is equivalent to the 
operator identity 

.AI:f: JI- 1 =: Jlf:. (6.13) 
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Now replace v#' and f in (6.13) by v#' 2 and ( - H R)' respec­
tively, in order to obtain the desired result. 

Note that by construction v#' Rand H R involve polyno­
mials only of degree 3 and higher. It will be shown in a later 
section that the same is true for H~t. Thus, the equation of 
motion (6.11) for v#' R involves polynomials only of degree 3 
and higher. 

7. COMPUTATION OF v#'2 

Let ~ (t ) denote the result of applying v#' z to; In. Then, 
by definition, we have the relation 

~(t) = v#'z ;in = exp(:fz:) ;in, (7.1) 

or, equivalently, 

~(t) = ;in + :fz: ;in + (:fz:2/2!) ;in +.... (7.2) 

At this point it is useful to pause a moment in order to 
examine the degrees of various combinations of Lie opera­
tors and polynomials. Suppose J; and fm are any two homo­
geneous polynomials of degrees 1 and m, respectively. We 
shall let d U) denote the degree off Thus, with this notation, 
we write the relation 

d(J;) = I. (7.3) 

Next consider the operation of Poisson bracketing. Since this 
operation involves multiplication and two differentiations, 
we have the relation 

d([J;,Jm J) = I + m - 2 =d(J;) + dUm) - 2, (7.4) 

or, equivalently, 

d(:J;:fm) = d(J;) + dUm) - 2. (7.5) 

Finally, consider a set of k homogeneous polynomials 
P ,Jz, .. ,J k. Here the superscript merely labels the polyno­
mial, and has nothing to do with its degree. Also, let gm be a 
homogeneous polynomial of degree m. Then, trivial induc­
tion on (7.5) gives the result 

k 

d(:fl::fz: ... :fk: gm ) = m - 2k + I d(I). (7.6) 
i= 1 

Now apply the results of the previous paragraph to the 
right-hand side of (7.2). Evidently, all terms are of degree 1. 
Consequently, (7.1) is a linear transformation which can be 
written in the component form 

~a(t) = v#'2 ;~n = I Mab(t) ;~n, (7.7) 
b 

or, more compactly, in the matrix form 

~ = v#' 2 (; In = M; 10. (7.8) 

Thus, the computation of v#' 2 is equivalent to finding the 
matrixM. 

According to (6.6), the time evolution of j( 2' and conse­
quently of M, is governed by H 2• Suppose that Hz is written 
in the form 

(7.9) 

Evidently S is asymmetric matrix. Next compute the quanti­
ty : - H 2 : ;in. One finds the result 
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: -H2: ;~n = [;~n, H2 ] = I Jca Sab ;~n, (7.10) 
a,b 

where the quantities J ca are defined in terms of the funda­
mental Poisson brackets by the relation 

def 

Jca = [; ~n, ; ~n] . (7.11) 

Specifically, in matrix form, J is 2n X 2n and is given by the 
equation 

(7.12) 

Here each entry in J is an n X n matrix, I denotes the n X n 
identity matrix, and all other entries are zero. In computing 
(7,10), use has been made also of the symmetric property of S. 
Finally, using matrix notation, Eq, (7.10) can be written 
more compactly in the form 

:_Hz:;in=Js;in. (7.13) 

Suppose both sides of (6,6) are applied to the quantity 
; 10, On the left-hand side one obtains the result 

~ 2; in = t = M; in. 

The right-hand side gives the result 

v#'2: - H 2: ;in = v#'2 JS;in 

(7.14) 

= JSv#'2;in = JSM;in. (7.15) 

This last step may require some elaboration. In terms of 
components one finds the relations 

v#' 2(JS; in)c = v#' 2 I Jca Sab ; ~n 
a,b 

I Jca Sabv#' 2; ~n = I Jca Sab ~b 
a,b a,b 

I Jea Sab M bd ;; = (JSM;inlc, (7.16) 
a,b.d 

where use has been made of (7.7). 
Now compare the right-hand sides ofEqs. (7.14) and 

(7.15). They are both of degree 1 in; in, and therefore (6.6) is 
consistent as advertised. Also, the matrix M must evidently 
obey the differential equation 

M=JSM. (7.17) 

Finally, the stipulation that v#' be the identity map.f when 
t = t in requires, for consistency, that v#' R and v#' 2 also be 
the identity map when t = tin. See Eq. (6.1). Consequently, 
the matrix M is subject to the initial condition 

(7.18) 

The differential equation (7.17) with the initial condi­
tion (7.18) has a unique solution whose computation, in most 
cases, requires numerical integration. In the special case 
when the matricesJS (t ') andJS(t ") commute for all times t' 
and t ", one has, in analogy to (5.10) and (5.11), the explicit 
solution 

M = exp [ fn JS(t ') dt 'J. (7.19) 

Indeed, it can be shown that the solution of (7.17) depends 
entirely upon the Lie algebra generated by the matrices 
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IS (t ). 9 In the even more special case thatS (and therefore Hz) 
is time-independent, the integration required in (7.19) is im­
mediate, and one obtains the result 

M = exp [(t - t in) IS ]. 

In the case (7.20) one may immediately write 

j( z = exp(:/2:) 

with/2 given by the relation 

12 = - (t - tin) H 2 • 

(7.20) 

(7.21) 

(7.22) 

The determination of/2 can also be carried out in the general 
case. However, since the explicit form of/z is not required for 
the work of this paper, we shall not pursue the matter further 
here. 

8. COMPUTATION OF Hknt 

By definition, H R consists of terms of degree 3 and 
higher, 

(S.I) 

Also, in view of (6.10) and the fact that j( 2 produces a linear 
transformation when acting on; In [see (7.7)], it follows that 
H~t has the decomposition 

H¥;.t =H~'t +H~nt + "', (S.2) 

where each term H ~t is a homogeneous polynomial of de­
gree m given by the relation 

(S.3) 

To see how this works out in a specific case, consider the 
computation of H ~nt. The terms of still higher degree are 
handled analogously. Suppose that H3 is written in the ex­
plicit form 

H 3(;in,t)= ITabe(t);~n;~l;~n, (S.4) 
abc 

where Tube is a set of (possibly time-dependent) coefficients. 
Then use of(S.3) gives the relation 

H~nt(;in,t)= ITabe(j(Z;~n)(j(2;~n)(j(2;~n). (8.5) 
abc 

However, thanks to (7.7), the terms on the right-hand side of 
(S.5) may be evaluated explicitly so that H~nt can be ex­
pressed in the form 

H~nt(;in,t)= I TabeMaa,MwMee,;~~;~n,;~~. (S.6) 
abc 

a'b 'e' 

Finally, the sums in (S.6) can be grouped so that H ~nt can be 
written in the final form 

H int( rin t) _ ~ Tint (t) rin rin rin 
3 :" - ~ a'b'c' ~Q'~bJ~c" (S.7) 

a'b'c' 

where Tint is defined by the equation 

T~~b'e,(t) = I Tabe(t) Maa,(t) Mw(t) Mce,(t). (8.S) 
abc 

Note that because of the time dependence of M, H;nt is in 
general time-dependent even if H3 is not. 
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9. COMPUTATION OF j( R BY ITERATION 

Suppose that both sides ofEq. (6.11) are integrated with 
respect to the time from the initial time t in to some final time 
t. Then one finds the result 

j( R(f) - ,AI R(t in ) = f" dt' ,AI R(t'): - H¥;.t(t '):, (9.1) 

or, equivalently, 

j( R(t) =f + f, dt ' j( R(t'): _H¥;.'(t'):. (9.2) 

Here use has been made of the earlier result that ,AI R (t in) is 
the identity map f, 

Now iterate (9.2) by substituting the right-hand side 
back into the integral. If this is done once, we obtain the 
result 

j(R =f + f' dt ': _H¥;.'(t'): 
till 

+f' dt ' f" dt" j(R(t"): _H¥;.I(t"):: -H¥;.t(t'):. 
(In till 

Evidently, repeated iteration gives the result 

.AlR =f +f' dt':-H¥;.'(t'): 
,m 

(9.3) 

+ f' dt If" dt ": - H¥;.'(t "):: - H¥;.t(t '): + .... 
till till 

(9.4) 

Note that in Eq. (9.4) the terms in the integrals occur in 
chronological order with earlier times preceding later times. 
We conclude that j( R can be expressed as an infinite sum of 
multiple time ordered integrals over the Lie operators 
:-H¥;.t(t):. 

10. COMPUTATION OF f3 AND f4 

By definition j( R has the factorization 

j( R = '" exp(:/5:) exp(:f4:) exp(:J;:). (10.1) 

The purpose of this section is to compare the two expressions 
(9.4) and (10.1) for j( R in order to obtain explicit formulas 
for/3 and/4 . After the pattern of computation has been estab­
lished, the determination of/')'/6' etc., will be treated in a 
subsequent section. 

Supposej( R as given by (10.1) is applied to some homo­
geneous polynomial gm' Then, using the exponential expan­
sion (3.4), we obtain the result 

j( R gm = ... (1 + :/'): + ···)(1 + :/4: + :/4?/2! + ... ) 
X(I + :/1: + :J;:2/2! + :/1:

3
/ 3! + ···)gm 

=gm + (:J;:gm) + (:f3: 2/ 2!gm + :h:gm) + .... 
(10.2) 

Here, with the aid of (7.6), the various terms appearing in 
(10.2) have been grouped according to degree. Specifically, 
the degrees displayed are m, (m + 1), and (m + 2), respec­
tively. 

Next, suppose j( R as given by (9.4) is applied to the 
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same homogeneous polynomial gm' Then, using the decom­
position (8.2), we obtain the result 

Ji R gm =gm + (J:n dt': _H~nt: gm) 

+ (It dt': _H~nt:gm + It dt' 
e ln t lll 

xit'dt":_H~nt(t")::_H~nt(t'):gm) + .... 
tOO 

(10.3) 

Here again the terms appearing in (10.3) have been grouped 
according to degree. 

Now compare terms in (10.2) and (10.3) oflike degree. 
Also observe that gm is arbitrary. It follows that we must 
have the relations 

I
t 

•• _ I. int I. .J;. - dt . - H 3 (t )., 
tOO 

(10.4) 

:/3:
2 

+ :h: = (' dt ': - H~nt: + It dt' 
2! Jt m tOO 

xl
t
' dt": - H~nt(t "):: _ H~nt(t '):. 

tOO 
(10.5) 

Both sides ofEq. (10.4) are manifestly Lie operators. 
Consequently, the colons can be removed from both sides of 
the equation to give for 13 the explicit formula 

J; = - J:n dt' H ~nt(t '). (10.6) 

Note that both sides of (10.6) are of the same degree, as is 
required for consistency. 

The determination ofh is somewhat more difficult. 
Upon solving (10.5) for :/4:' we find the result 

:h: = dt ': - H~nt: __ . _3_' ft ·f·2 

1 m 2! 

+ II dt' (dt" : - H~nt(t "):: - H~nt(t '):. (10.7) 
tin Jt ln 

The first term appearing on the right-hand side of (10.7) is 
evidently a Lie operator. However, it is not so clear that the 
remaining terms also produce a Lie operator, although we 
know from the left-hand side of (10.7) that they must. Our 
task, therefore, is to manipulate the terms in question to see if 
they can be brought into the form of a Lie operator. 

By using the explicit result (10.4) for :J;:, the quantity 
: 13:2 /2! can be expressed in the form 

·f·2 1 ft 
~=- dt' 

2! 2 t;n 

X (' dt": _H~nt(t"):: _H~nt(t'):. (10.8) 
)t m 

Observe that the domain of integration in (10.8) consists of 
the two regions t " < t' andt " > t '. Ifwesplit the integral into 
separate integrals over these regions and exchange integra­
tion variables in the region t" > t', then (10.8) can be rewrit­
ten in the form 
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Now substitute (10.9) into (10.7). We obtain the result 

:h: = II dt': _H~nt(t'): 
till 

+ ~ ft dt' (" dt" 
2 till J,lfl 

X [: - H~nt(t "):,: - H~nt(t '): l. (10.10) 

In accord with our expectations from Sec. 5, the terms (10.7) 
involving H ~nt have been reexpressed as a commutator! 

We are now ready for the last step. According to (3.3), 
the commutator of two Lie operators is again a Lie operator. 
Specifically, for the case in question, one has the relation 

[: - H~nt(t "):,: - H~nt(t '): l 
(10.11) 

It is now obvious how to remove the colons from both sides 
of (10.10). Thanks to (10.11), we find the final result 

14 = - (' dt' H~nt(t ') 
Jt ln 

+~II dt' (dt" [_H~nt(t"), _H~'t(t')]. 
2 t m JI HI 

(10.12) 

11. COMPUTATION OF TERMS BEYOND '4 
The purpose ofthis section is to extend the results of the 

previous section to compute thelm of higher degree. The 
general problem is to reexpress various integrals over pro­
ducts of Lie operators as integrals involving only commuta­
tors so that the identity (3.3) can be used to remove colons. In 
order to minimize algebraic complexity in this process of 
"decolonization," it is necessary to extract the important 
features of the calculations we have just presented and to 
omit all irrelevant aspects. This will be done by showing that 
the entire calculation reduces to an exercise in the permuta­
tion oflabels and involves only the commutators of symbols. 

We begin by defining a generalized "bracket operator," 
denoted by the symbol (~j ~' .... mc)' by the rule 

i j ... m _ . int.. int. deffl ft
, C(3 ... c)- . dt l dt2 .. ·.-Ha (t;) .. -H(3(tj ). 

1111 tin 

(ILl) 

Here to tj , ... , tm is some permutation of the variables 
t l , t 2," • In this notation, Eqs. (10.6) and (10.7) take the more 
compact forms 

:J;: = (D, (11.2) 

:h: = <!) - G)(D/2 + (~j). ( 11.3) 

The next step is to observe that products of bracket 
operators can be reexpressed in terms of sums of single 
bracket operators. For example, the second term in (11.3) 
can be rewritten in the form 

G) G) = G ~) + (~ D· (11.4) 
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This decomposition is simply a restatement that the region 
of integration can be split into the two regions t I > t2 and 
t I < t2• Ifwe substitute (11.4) into (11.3), we immediately ob­
tain the result 

:h: = <!) + (~D/2 - G ~)/2, (11.5) 

or, equivalently, 

:h: = <!) + (~ , ~ 112. (11.6) 

Here we have introduced the obvious notation (~ , ~ I to de­
note the time ordered integral of a commutator. Equation 
(11.6) is identical to (10.10), and the colons can be removed 
immediately to give (10.12). 

We can state the general rule as follows: Any product of 
bracket operators can be replaced by a sum of single opera­
tors. The lower indices in the single operators are identical to 
and in the same order as they were in the original expression. 
The upper indices consist of all possible permutations of time 
ordering consistent with whatever time ordering existed 
within the factors of the original expression. Suppose, for 
example, we are given the product 

(11.7) 

In accord with the previous discussion, this product can be 
decomposed into the sum of three single operators, 

(~1)(~) = (~13y) + G1~,) + G~~). (11.8) 

Note that the relative time ordering of the a and fJ factors 
never violates the j > k ordering of the original expression 
(11.7), In the simple case of( 11.4), the original expression had 
no special time ordering, with the result that there was no 
preferential order for the decomposition. 

Let us apply the tools developed so far to the computa­
tion of :k. Consider first Eq. (10.2). When acting ongm , the 
Lie operators giving rise to terms of degree (m + 3) are given 
by the expression 

:/5: + :h: :/3: + :/3:3/3!. (11.9) 

Next consider (10.3). Using the generalized bracket notation, 
when acting on gm the factors giving rise to terms of degree 
(m + 3) are given by the expression 

G) + (j !) + (~ D + (~ ~ j). (11.10) 

Comparison of (11.9) and (11.10) shows that :/5: must be 
given by the relation 

:f~: = G) + (~ !) + (~ j) + (j j j) 

- :h: :/1: - :/3:3/6. (11.11) 

Now use the previous results for :/3: and :/4: as given by 
(11.2) and (11.6). Substituting them into (11.11) gives the re­
lation 

:/5: = (G») + (j !) + (~ D - <!) (D) 
+(~j~)-g,jl G)/2-G)G)(D/6). (11.12) 

Here we have collected the various terms into three groups in 
anticipation of the fact that each group can be decolonized 
separately. 

The first group in (11.12) consists of a single term and is 
therefore already manifestly a Lie operator. The terms in the 
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second group can be manipulated using the decomposition 

<!)G)=<!~)+(~D. (11.13) 

It follows that the terms in the second group can be written 
as a commutator as anticipated: 

(~ !) + (~ j) - <!) G) = (j !) - <! ~ ) = (~ , ! I· 
(11.14) 

The conversion of the terms in the third group into 
commutators requires more work. One procedure is simply 
to combine products using the analog of (11.8), and then 
collect the resulting terms into multiple commutators. How­
ever, there is another procedure which is at once simpler and 
more profound. 

Consider the set of all (N - 1 )-fold commutators of N 
different abstract linear operators 01,02, ... ,ON' It is shown 
in an appendix that this set has the remarkable properties 
listed below: 

(1) The set forms a vector space of dimension (N - I)!. 
(2) The basis vectors for this vector space may all be 

taken to be nests. A nest is defined to be a multiple commuta­
tor of N objects that ends with (N - 1) right braces. For ex­
ample, (a, ( /3, (r,D I j) is a nest, and U a, /3 I, (r,D j) is not. 

(3) In forming a basis, it is sufficient to use only those 
nests that end with a particular but arbitrary operator select­
ed from the collection 01,02, ... ,ON' Suppose, for example, 
that this operator is selected to be 01' Then a basis is formed 
by the set of nests given by 

( ... , (Ok' (OJ' (OJ! OIl .. '}' 

where the indices ... , k,j,i are all possible permutations of 
the numbers N, ... ,4,3,2. Note that there are (N - I)! such 
nests in accord with property 1 above. 

(4) The N-tuple ( ... , k,j,i, 1) will be referred to as the 
defining string of a nest. Defining strings playa special role. 
Consider an expression which is known to be decomposable 
into a set of (N - 1 )-fold commutators of N objects. Suppose 
all nests ending with ° I are used as a basis for the decomposi­
tion. Then, in this decomposition, the coefficient of the nest 
with the defining string ( ... , k,j,i, 1) will be the sum of all the 
coefficients of the factor .. ·Ok 0jOiOI in the original expres­
SIOn. 

Let us apply the results of the previous paragraph to the 
multiple commutator decomposition of the third term in 
(11.12). Since there are three operators in question, we must 
deal with the set of all twofold commutators of three opera­
tors. This set is of dimension 2, and a convenient set of basis 
vectors is given by the nests n ' (~ , ~ I } and g , (j , j I }. 
Consider the defining string (3,2,1) for the first nest. Exa­
mine the third term in (11.12) to find the coefficients of the 
corresponding factor. Evidently (j ~ j ) contains the factor 
with a coefficient ( + 1), [~ , ~ I (j) when expanded and de­
composed contains the factor with a coefficient of ( + 1), and 
G ) G ) G ) when decomposed contains the factor with a co· 
efficient of ( + 1). Thus the coefficient of the nest 
n ' (j , j I} in the decomposition is 1 + (1)( - 1/2) 
+ (1)( - 1/6) = (1/3). Similarly, one finds the coefficient of 
the nest g , [j , j I} is also (1/3). Consequently, the third 
term in (11.12) can be rewritten in the form 
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<~ ~ D -!~, ~ I G)/2 - G)G)<D/6 

= n ' ! 3 , ~ I }!3 + g , ! j , ~ I }/3. (11.15) 

Now substitute (11.14) and (11.15) into (11.12). We find 
the result 

:fs: = G) + g ,! I + g , n ' ~ l}/3 + g , ! ~ , ~ l}/3, 
(11.16) 

or, after decolonization, the final result 

i~ = - J:n dt l H~nt(td + f" dt l 

1 I' It, It2 + 3 ,;n dt l ,m dt2 ,m dt3 

X ([ - H:;"(t3)' [ - H~n'(t2)' - H~n'(tl)]] 

+ [-H:1n'(tZ),[ _H~n'(t3)' _H~n'(tl)]])' (11.17) 

Note that in decolonizing the triple commutator we have 
used the relation 

(:/:, !:g:,:h:l} = (:/:,:[g,h]:) = :[J,[g,h]]:, (11.18) 

which follows directly from (3.3). 
Let us, in analogy with (11.1), introduce the shorthand 

notation 

(11.19a) 

etc. 

(11.19b) 

Then, Eqs. (10.6), (10.12), and (11.17) can be written more 
compactly in the form 

13 = [n, 

14 = [!] + n ' n /2, 

( 11.20) 

(11.21) 

Is = [n + n ,!] + n ' n ' j ]] 13 + n ' u ' n ] 13. 
(11.22) 

The reader should compare these results with their colo­
nized versions given in (11.2), (11.6), and (11.16), respective­
ly. 

The calculation of :/6: may be carried out in similar 
fashion. One finds that it has the mUltiple commutator de­
composition given by the formula 

:h: = <!) + n , ~ I + {~ , ! 112 + ({! , {~ , ~ lJ 

+ u ' n , ~ lJ + 3 g , n ' ! lJ + g , n , ! lJ)1 4 

+ (g , !~ , f1 ,~l j) + (j , n , !~ , n}} 

+ £1 , g , n , ~ I JJ)/4. (11.23) 

Decolonization gives the final result 
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16 = [!] + n ' ~ ] + n ' ! ] 12 

+([!, n ,~]] + [!, [j ,~]] 

+ 3 n ' n ,!]] + n ' u ,!]] )/4 

+ (u ' n ' [j , n]] 
+ [j , n ' n ' ~ ] ]] + [j , n ' n ' n ]] )14. 

12. IMMEDIATE DECOLONIZATION 

(11.24) 

There is an alternate complementary approach to the 
computation ofthelm that is worthy of mention. It has the 
feature that decolonization can be performed explicitly in 
the general case prior to subsequent calculation. 

From the factorization (10.1) it follows that j( R can be 
written in the form 

j) R = ... + ... c~ 5j ( 4j( 3 

( 12.1) 

Suppose (12.1) is substituted into the equation of motion 
(6.11) and both sides of the resulting relation are multiplied 
by j( R I. Then we obtain the result 

... + j( 3- I j( 4- I j( 5- I vii' 5 j( 4j( 3 

+ j(3- Ij(4- lvII'4j(3 + j( 3- 113 
=: -H~':. (12.2) 

Next, let # 1# denote the adjoint of the Lie operator 
:f:.1t is a kind of super operator which acts on the general Lie 
operator: g: according to the rule 

#I#:g: = !:/:,:g:l· (12.3) 

Then, using (6.2), it can be shown that l 

j( - Ij( -- Ij( - I I( j( j( 
3 4 S~543 

= exp( - #h#) exp( - #h#) j(s- lvii's, etc. 
(12.4) 

We now need to compute j( m' Again with the aid of 
adjoint operators, it can be shown that the formula for differ­
entiating an exponential is given by the relation3 

j(;;; 1 vii' m = iex( - # 1m #):im: . (12.5) 

Here the integrated exponential function iex(w) for general 
argument w is defined by the equations 

def II = wm 

iex(w) = dr exp(rw) = L . 
o m=O (m + I)! 

(12.6) 

Upon combining the fruits of our labor, we find that 
(12.2) can be rewritten in the form 

." + exp( - #/3#) exp( - #h#) iex( - #1s#):Is: 
+ exp( - #h#) iex( - #/4#):h: 

+ iex( - #i3#):!;: =: - H~':. (12.7) 

The colons can now be removed immediately from both 
sides of (12.7) to give the result 

... + exp( - :h:) exp( - :h:) iex( - :1s:)1s 
+ exp( - :h:) iex( - :h:)~ 

+ iex( - :h:)h = - H~'. 
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Essentially all that is needed to pass from (12.7) to (12.8) is 
repeated use of relations of the form (3.3), (11.18), etc. 

Suppose we examine (12.8) with the aim of equating 
terms oflike degree. Using the expansion (12.6), we find the 
result 

iex( - :fm :)im = (1 - :fm :/21 + :/m? 131 + ···lim. 
(12.9) 

According to (7.6), the terms on the right-hand side of (12.9) 
have degree m, 2m - 2, 3m - 4, etc. Consequently, upon 
using (8.2), and equating terms of like degree in (12.8), we 
find the explicit formulas 

ft = - H ~nt - P4 iex( - :;;:);;, 

is = - H~nt - P5 iex( - :;;:)/:, 

- P5 exp( - :/3:) iex( - :ft:)ft, 

i6 = - H~t - P6 iex( - :f3:)}3 - P6 exp( - :/,:) 

Xiex( - :ft:)h - P6 exp( - :/,:) 

Xexp( - :f4:) iex( - :/5:)/5' etc. (12.10) 

Here Pm denotes a projection operator which projects out 
terms of degree rn. 

Equations (12.10) may be solved and integrated succes­
sively to find the desired functions/m • For example, upon 
integrating the first of equations (12.10), we find the expected 
result (11.20). Here we have used the condition that/m = 0 
when t = tin, which corresponds to the condition J( R (t in) 

=f. 

Let us examine the second of Eqs. (12.10). Use of (7.6) 
and (12.9) gives the result 

. . 
P4 iex( - :f3:)/, = - :/,:f312. (12.11) 

Consequently,ft obeys the differential equation 

i4 = - H~nt + :f3:( - H~t)/2. (12.12) 

By making use of (11.2), or (11.20), we obtain the equivalent 
result 

h(t) = - H~nt(t) + <D( - H~nt(t))/2. (12.13) 

Equation (12.13) may now be integrated directly. In doing 
so, it is convenient to let t I replace t as the variable of integra­
tion and, correspondingly, to increase the subscripts on all 
other variables and limits of integration by 1. When this is 
done, integration of (12.13) gives the previous result (11.21). 

Similarly, Eqs. (11.22) and (11.24) can, after suitable 
manipulation, be obtained by integration, respectively, of 
the third and fourth of Eqs. (12.10). As a check of her or his 
understanding, the reader is encouraged to reproduce (11.22) 
by this method. In this connection identities such as (11.4) 
and (11. 8) are again of use. 

13. CONCLUDING REMARKS 

We have shown how to compute the polynomials/zJ3' 
etc. that characterize the mapping J( in terms of the polyno­
mials Hz, H 3, etc. that characterize the Hamiltonian. 10 Ex­
plicit formulas have been given for the polynomials};-J;;, 
and general machinery has been developed for the computa-
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tion of the polynomials of still higher degree should the need 
arise. 

These results are expected to be of value in the fields of 
accelerator design and charged particle beam and light op­
tics. They may also be of value in other areas of nonlinear 
dynamics. For example, suppose zg(t) is a periodic orbit. 
Then it can be shown that the stability of this orbit, when one 
goes beyond the linear approximation, is governed by the 
polynomials /" ft, etc. I, I I 

It may also be remarked that expressions such as (11.17) 
are not as formidable as they may appear. Once the indicated 
Poisson brackets have been performed, the various mono­
mials in the variables; in may be taken outside the integral 
sign since they are, in fact, time independent. The integrals 
then involve only products of matrix elements of M (t ) and 
various coefficients such as those appearing, for example, in 
(8.4). 
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APPENDIX 

The purpose of this appendix is to prove the assertions 
made in Sec. 11 about (N - 1 I-fold commutators of N differ­
ent linear operators. We begin by showing that all such mul­
tiple commutators can be written as linear combinations of 
nests. The proof, which is by induction, will be presented in a 
somewhat discursive fashion in order to illustrate along the 
way various properties of multiple commutators. 

Consider first the case N = 2 where there are only two 
operators 0 1 and 02' The possible commutators are 1°1,°2 ) 

and 10z, 0 1 J, Each is obviously a nest. Also, from the anti­
symmetry condition we have the relation 

(AI) 

Thus, the two commutators are linearly dependent, the vec­
tor space they span is one-dimensional, and either nest may 
serve as a basis, 

Next consider the case N = 3 where there are three op­
erators °1, °2, and 03' From these operators one may form 
12 commutators which superficially appear to be distinct. 
They are the commutators of the form (X, I Y, Z)} and 
{I X, Y I, Z }, where the roles of X, Y, and Z are filled by the 
six possible permutations of °1, °2, and 03' However, the 
commutators of the form {I X, Y I ' Z } are related to those 
which are nests through the antisymmetry condition 

(IX, YJ,Z} = - {Z, IX, Yll, (A2) 

Thus in the case N = 3, all twofold commutators are again 
expressible in terms of nests. 

How many nests are required to form a basis? All six 
possible nests for the case N = 3 are listed below: 

U I = {03' 1°2, 0d }, U4 = (O l ' I 0z, 03) }, 

U 2 = {Ol' 103'021}, u5 = (02' 103,01)}' 

u3={02,IOI'031}, u6 = {03, 101,02)}' (A3) 

However, the antisymmetry condition gives the relations 
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(A4) 

Thus, at most only three nests are needed to form a basis. 
Moreover, the Jacobi identity gives the relation 

U I + Uz + U3 = O. (AS) 

Thus, the vector space of twofold commutators of three op­
erators is two dimensional. A convenient basis is given by the 
nests U I and Us' Note that both these nests end with the 
operator 0 I' 

We now proceed with induction. Let CN denote the 
space of all (N - 1 )-fold commutators of N different linear 
operators. We assume that it is known that these spaces can 
be spanned by nests for all values of N <M. Now consider the 
space C M t I . Let U be some element in C M + I . Then since U 

is a multiple commutator, it can be written in the form 

U=[X,Y), (A6) 

where X and Yare members ofCj and Ck , respectively, and} 
and k are related by the equation 

}+k=M+l. (A7) 

Also observe that X and Y have no operators in common. 
According to (A 7), the quantities} and k are less than or 

equal to M. It follows by assumption that X and Yean be 
expressed in terms of nests. We denote these nests by A/"f. 
The upper index labels the nest, and the lower index labels 
the space C, to which it belongs. Thus, we may rewrite (A6) 
in the form 

= I aa fib [oVi, A/"~ l· (A8) 
a,b 

Since ,/1/J is a nest, it can be written in the form 

JVi = [Od' "Vj_1 L (A9) 

where Od is a single operator in the (M + I)-fold collection 
OI,OZ" .. ,OM + I ' Apply the Jacobi identity to each term in 
(A8) using the representation (A9). This gives the result 

i /I/'a 1/'b I - {i 1/"C I /'h } {,~f j"~ k - (Od'~' j-I ,jJ; k 

= COd' [JVj_1 "V~ l} - {JVj_I' [Od,JY~ l}, 
(AIO) 

Consider the first term on the right-hand side of(AIO). 
The commutator [ ~V;_ I' ,1/~ 1 belongs to C, with 
I = } + k - I = M, Thus, by the induction hypothesis, this 
commutator can be written as a sum of nests in the form 

(All) 

Correspondingly, the first term on the right-hand side of 
(A 10) can be written in the form 

But each term [0 d, ,/V':w I is some nest ff k + I . It follows 
that the first term on the right-hand side of (A 10) can be 
expressed as a sum of nests in C M + I . 

What can be said about the second term on the right­
hand side of (A 1O)? Evidently each term ( 0 d, ff% 1 is some 
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nest JYl + I • Thus, the terms on the right-hand side of (A 10) 
which are not manifestly composed of nests are of the form 
[ffj _ I' JYf + I l· Consequently, Eq. (A 10) can be rewritten 
in the form 

[,Vi,vyn = [ffj_l,fff+ Il + IOfffk+ I' 
f 

(A13) 

Comparison of the left- and right-hand sides of(AI3) 
shows that the value of} has been decreased by I and the 
value of k has been increased by 1. Evidently the operations 
which led to (A 13) can be repeated at will until the only terms 
which are not manifestly nests are of the form 
( ,vt, A,~j+ k _ I l, But ff7 must be one of the operators 
OI· .. OM + I' and, consequently, [ ff7, JVJ+ k _ I l is also a 
nest. We have seen that all the terms on the right-hand side 
of(A8) can be written in terms of nests, Therefore, u itself can 
be written in terms of nests, and the induction process is 
complete, 

At this point we suggest that the reader consider the 
case N = 4 and explicitly work out a decomposition into 
nests for the multiple commutator {[ 0 1, 0zl, (03, 04l}. 

We next show that only those nests ending with a parti­
cular operator 0, are needed to form a basis. Without loss of 
generality we choose 0, = 0 1, Again we proceed by induc­
tion. As shown in the previous discussion, the assertion is 
already known to be true for N = 2 and N = 3, 

Suppose the assertion is assumed to be true for all 
N <M. Let JV M + I be a nest formed from the operators 
OI,,·OM + \, Suppose the first entry in this nest is the opera­
tor 0;. That is, A~'M + I can be written in the form 

(AI4) 

where, by construction,'/Y M is a nest composed of M opera­
tors different from 0; and each other. There are now only 
two possibilities. Either 0; =1=0 1 or 0, = 0 1, 

In the first possibility, 0; =f 0 1, ff M is a nest of M ele­
ments including the operator 0 1, Since the assertion in ques­
tion is assumed to be true for N <M, it follows that ff Mean 
be written as a linear combination of nests all having 0 1 as 
their last entry. Then, according to (A14), ff M+ I can also 
be written as a linear combination of nests all having 0 1 as 
their last entry, and the induction process is complete. 

Suppose, according to the second possibility, that OJ 
= 0]. Let OJ and Ok be the last two entries of ff M + I , re­

spectively. That is, '///M + I is taken to have the form 

'/V'M+ I = [0], [ .. " [ OJ, Ok I J ... J. 
Let V denote the commutator of OJ and Ok' 

V=[Oj,Od· 

(AIS) 

(AI6) 

If Vis regarded as a single operator, then (AIS) shows that 
,/Y M + I may be viewed as a nest consisting of the (M - I) 
operators 0" with 0, =f0j and 0, =f0k, and the operator V. 
From this perspective, ff M + \ is a nest of M operators in­
cluding the operator 0]. Therefore, according to the induc­
tion hypothesis, ff M + I may be written in the form 

(AI7) 
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where each .2"~ is a nest containing V as a single operator 
and having 0 1 as its last entry. That is, each .2"~ is of the 
form 

.2"~ = {Om' [ ... , [V, [ ... , [On' 0dj ... j}. (AI8) 

Evidently, each .2"~ can also be written in the form 

.2"~ = {Om' [ ... , [V,ffjj ... }, (AI9) 

where ff is either a nest ending with 01> or is the single 
operator 0 1 itself. 

We are ready again to use the Jacobi identity, this time 
on the quantity [ V, ffj. We find the result 

[V, ffj = {[ OJ' 0d, ff} 

(A20) 

Observe that both terms on the right-hand side of (A20) are 
nests having 0 1 as the last entry. Upon inserting (A20) into 
(AI9), we see that each.2"~ can also be expressed as a linear 
combination of nests composed of the operators ° 1 ••• 0 M + I 

and all having 0 1 as the last entry. It follows from (AI7) that 
ff M + I also has this decomposition, and the induction pro­
cess is again complete. 

We have seen that any element of C N can be expanded 
in terms of nests and that it is sufficient to use only those 
nests ending with ° I' The last assertion to verify is the linear 
independence of the nests with the defining strings 
( ... ,k,j,i, I) when the quantities ... ,k,j,i have as values all pos­
sible permutations of the indices N, ... ,4,3,2. The simplest 
proof follows from direct inspection. 

Consider the nest with the defining string ( ... ,k,j,i,l). 
When written out in full, this nest has the expansion 

{ ... , [Ok' [OJ' [OoOdj···j} 
= other terms + ... 0kOjOjOI' (A21) 

The last term displayed on the right-hand side of(A21) will 
be called the trailing term. It has the property that it ends 
with 01' Observe that there is only one term which ends with 
°1, and therefore the trailing term is uniquely defined. That 
is, all other terms in the expansion (A21) have 0 1 either at the 
beginning or buried somewhere in the middle. 

Now suppose ( ... ,k ',j', t,l) is some other defining 
string. Its corresponding nest has the expansion 

{ ... , [Ok" !OJ'!Oj,,Oljj .. ·j} 
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= other terms + ···Ok' 0j'0;, 01' (A22) 

Evidently, the trailing terms of (A21) and (A22) are distinct 
unless i' = i,f = j, k' = k, etc. It follows that the nests in 
question are linearly independent . 

Even more can be said. Suppose u is some combination 
of products of operators, and suppose u is known to belong to 
CN • Let us expand u in the basis set of nests corresponding to 
the defining strings ( ... ,k,j, i,l). Then the expansion coeffi­
cient for a given nest is the same as the coefficient of the 
trailing term of that nest as it appears in u. 
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We introduce the concept of generalized canonical transformations as symplectomorphisms of 
the extended phase space. We prove that any such transformation factorizes in a standard 
canonical transformation times another one that changes only the time variable. The theory of 
generating functions as well as that of Hamilton-Jacobi is developed. Some further applications 
are developed. 

PACS numbers: 03.20. + i, 02.40. + m 

1. INTRODUCTION 

Over the recent years there has been a considerable 
amount ofliterature devoted to the study of the applications 
in physics of differential geometry tools and in particular in 
classical mechanics. In the case of time-independent systems 
there are two alternative descriptions: both the Lagrangian 
and the Hamiltonian formalism are particular cases of the 
theory of locally Hamiltonian dynamical systems, ' but in 
most cases the Hamiltonian formalism is easier to deal with 
because geometry-the symplectic structure-and dynam­
ics-the Hamiltonian I-form dH-are independent ingredi­
ents; on the other side, the Lagrangian function contains 
information on the symplectic structure as well as on the 
dynamical vector field. It makes it more difficult, for in­
stance, to study symmetries of the geometry which are not 
symmetries of the dynamics and conversely.2 

The geometrical framework for describing time-depen­
dent systems is not so well established. The usual Hamilton­
ian description makes use of a contact structure which is 
built up from the Hamiltonian1.3; dynamics and geometry 
are coupled again, and for this reason the geometrical mean­
ing of a canonical transformation is not clear. On the other 
hand, some transformations changing only the time have 
succeeded to deal with certain dynamical systems. 4

-
8 How­

ever, this kind of transformations has no relation to the ca­
nonical transformations defined in Refs. 1 and 3. The aim of 
this paper is to develop the concept of generalized canonical 
transformation for a time-dependent system in the frame­
work of the extended phase space formalism. These general­
ized canonical transformations are but particular cases of 
symplectomorphisms of the extended phase space when it is 
endowed with the natural symplectic structure; this general­
ization covers the second kind of transformations considered 
above. Moreover, it will be shown that any generalized ca­
nonical transformation can be factorized as a product of a 
transformation of this kind times a standard canonical trans­
formation. 

The extended phase space formalism, which appears in 
a natural way in general relativity, reduces the problem of a 
time-dependent Hamiltonian to that of an autonomous dyn­
amical system, and the dynamical evolution can be consid­
ered as a one-parameter group of symplectomorphisms. The 
transformation carrying the system to equilibrium will then 
be a symplectomorphism which allows development of the 
Hamilton-Jacobi theory. 

The organization of the paper is as follows. In Sec. 2 a 
short description of the usual and the extended phase space 
formalisms, as well as a relation between them, is given. In 
particular, the reason for the H dependence of the usual con­
tact form is shown to correspond to the different ways of 
identifying the contact manifold as a submanifold of the ex­
tended phase space. The concept and main properties of gen­
eralized canonical transformations are introduced in Sec. 3, 
as well as the standard case. Section 4 is devoted to the study 
of the generating functions of canonical transformations and 
to establishing the generalized Hamilton-Jacobi equation. 
Some applications are discussed in Sec. 5. 

2. TIME·DEPENDENT SYSTEMS 

The standard geometric description of time-dependent 
systems is carried out by means of a 2n + 1 differentiable 
manifold T *Q X H as well as a Hamiltonian function 
HEA o( T *Q X H), which enables us to define a contact struc­
ture on T*Q XH'·3: the closed 2-form W H of rank 2n is de­
fined by W H = r*wo - dH 1\ dt, where Wo is the canonical 2-
form on T *Q, t is the natural coordinate function on H, and r 
denotes the projection r: T*Q X H-..T*Q. The time-depen­
dent vector field X H giving the time evolution is then defined 
by 

(2.1) 

i.e., if(qi,pi) are local canonical coordinates in T*Q the 
expression of X H in the corresponding coordinates in 
T*Q XH will be 

X
H 

= aH ~ _ aH ~ + ~ (2.2) 
api aqi aqi api at 

In this section we will develop an extended Hamilton­
ian formalism where the time does not play any distin­
guished role. The advantage of such a formalism rests on the 
existence of a canonical symplectic form which allows us to 
relate functions and Hamiltonian vector fields, to introduce 
Poisson brackets, and to clarify the meaning of the tradition­
al concept of canonical transformations such as will be 
shown in next sections. 

In this approach the configuration space Q is replaced 
from the beginning by Q X H, the space of events, and there­
fore the cotangent bundle T *Q will change to the extended 
phase space,9.10 the cotangent bundle T*(Q XH). In such 
manifold there is a canonical 2-form no that in local canoni-

2745 J. Math. Phys. 24 (12), December 1983 0022-2488/83/122745-06$02.50 © 1983 American Institute of PhYSics 2745 



                                                                                                                                    

cal coordinates will be given by flo = dpi 1\ dqi + du 1\ dt. 
We recall the natural diffeomorphisms T*(Q X R)~T*Q 
X T*R~T*Q X RX R*. The coordinate function u is given 
by uta) = a(alat)IVaET*(Q XR) and the projection of 
T*(Q XR)onT*Q X Rwillbedenotedby,u. The dynamics in 
this formalism can be defined by making use of an extended 
Hamiltonian <PEA o( T *(Q X R)) as indicated in the following 
theorem. 

Theorem 1: Let HEA O(T *Q X R) be a time-dependent 
Hamiltonian and define the extended Hamiltonian 
<PEA O(T*{Q X R)) by <P = H0f.1 + u. The dynamical vector 
fieldX<p on T*(Q X R) of the globally Hamiltonian dynami­
cal system (T*(Q X R),flo,<P) is f.1-related to XH. 

Proof The vector field X <p is expressed in local canoni­
cal coordinates as 

I.e., 

A -1 A_I 

X<p = - fl 0 (d<P) = - fl ° (d (HOf.1) + du), 

a(Hof.1) ~ 
ap, aqi 

a 
+­

at at 

a(Hof.1) ~ 

aq' ap, 

au 

and therefore 

f.1* (X<p) = a(H0f.1) ~ _ a(Hof.1) ~ 
ap, aqi aqi api 

a + - = XII' 
at 

Notice that the preceding result means that the integral 
curves of X<p project on integral curves of XH, which are 
usually considered the trajectories of the time-dependent 
mechanical system defined by H. But in this formulation two 
new equations for the integral curves of X<p arise, namely, 
(dt0f.1)1 ds = 1 and dulds = - a(H0f.1)1 at; while the first one 
identifies the parameter s as the time, the second suggests the 
identification of - u with the "energy." 

The constant value hypersurfaces for <P are invariant 
under time evolution, and the restriction of flo endows them 
with a contact structure in such way that they are isomor­
phic as contact manifolds to (T*Q XR, wH ): 

Theorem 2: Let Sr be Sr = [mET*(Q XR)I<P (m) = r] 
and denote by ir the natural injection ir : Sr~T*(Q XR). 
The pair (S" i~ flo) is a contact manifold and the restriction 
f.1r of f.1 to Sr is an isomorphism between the contact mani­
folds (Sr' i~flo) and (T*Q XJR, WH)' 

Proof Sr is a regular hypersurface and therefore 
(Sr' I",: flo) is a contact manifold (see, e.g., Proposition 5.1. 7 in 
Ref. 1). Furthermore, if mES" then ker f.1* (m) 
= [Aalaul m; AER J. The tangent space TmSr is the kernel of 

d<P (m) and therefore ker f.1* (m)nTmSr = 0. Consequently, 
the rank of the restriction of f.1* (m) to TmSr is 2n + 1, i.e., 
f.1r* (m) is an isomorphism and f.1r is a local diffeomorphism. 
On the other hand,f.1r is an injective map of Sr onto T *Q X JR, 
and, consequently, f.1r is a diffeomorphism. Finally it is easy 
to check thatf.1~wH = i~flo. In fact,f.1r =f.1°ir' 
H0f.1r = r - uoi" and therefore 
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i.e., 

f.1~WH = f.1~(r*wo - dH 1\ dt) = (rour)*wO 

- d (H0f.1r 1\ d (t0f.1r) 

= i~ [(r0f.1)*wo + du I\d (t0f.1)], 

Noteworthy is the fact that the extended phase space is 
foliated by the family ofhypersurfacesSr , rER. This foliation 
is regular and any two leaves Sr, and Sr. are diffeomorphic; 
the diffeomorphism is given by f.1r-": 10f.1r,. 

3. THE CANONICAL TRANSFORMATIONS IN TIME­
DEPENDENT SYSTEMS 

In the case of a (time-independent) Hamiltonian dyna­
mical system, canonical transformations are symplectomor­
phisms of the symplectic manifold; but in the standard for­
mulation of time-dependent mechanical systems the 
geometric structure in T *Q X R is not a symplectic but a 
contact structure, and there is no way to give a similar geo­
metric definition of the concept of canonical transformation. 
The extended formalism developed in Sec. 2 suggests to de­
fine such a concept as that of a fiber-preserving symplecto­
morphism in (T*(Q X JR), flo)' We will show later that this 
concept generalizes the one usually found in Refs. 1 and 3. 

Definition 1: A canonical transformation of a time-de­
pendent system (T*Q X JR, wH) is a pair (tf;,¢;) of diffeomor­
phisms, tf;EDiff(T*(Q XJR)), ifyE Diff(T*Q XJR) such that: 

(i) f.1 Ow = ¢;0f.1; 
(ii) tf; is a symplectomorphism of (T*(Q X JR), flo)' 
In an appropriate coordinate system the condition (i) 

means that tf;(q, p,t,u) = (¢; (q, p,t), ¢ (q, p,t,u)), where 
¢EA O(T*(Q XR)). 

It is to be remarked that this concept of canonical trans­
formation does not depend on the Hamiltonian function H 
such as was in the case of an autonomous system. 

The set of these generalized canonical transformations, 
Can(T*Q X R)isagroupwith respect to the natural composi­
tion law. 

In order to analyze this concept of generalized canoni­
cal transformation in terms of the standard framework, we 
recall that if (M, w, <P ) is a Hamiltonian dynamical system 
and Sr(<P) is a constant value hypersurface for <P, then, for 
anytfJEDiff(M), tf;(Sr(<P)) = Sr(<P°tf;-I) = Sr(tf;-I*<p). More­
over, the diffeomorphism tf; defines a new Hamiltonian dyn­
amical system tf;(M, w, <P) = (M, tf;-l*W, tf;-I*<p). The 
dynamical vector fields are related by tf; * (X <p) = X <po", ' 
= (X", '*<p). In a similar way, if(M, w) is a contact structure, 

(M ,tf;-I*W) is also a contact structure to be denoted tf;(M, w). 
Hereafter we will use tf; * as a shorthand for tf; - 1 *, and the 
former expressions become tf;(M ,w,<P) = (M, tf;*w, tf;* <P) 
and tf;*X<p = X",.<p, 

In the particular case we are considering, SrI¢;* <P) is 
also a regular submanifold of T*(Q XJR). Moreover, since 
(tf;, ¢; ) is a fiber-preserving map, the restriction of f.1 to 
Sr(tf;* <P) establishes a diffeomorphism between Sr(tf;* <P) 
and T*Q XlR. Thus, the new Hamiltonian function tf;* <P 
defines a regular projectable foliation of T *(Q X JR); its leaves 
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are in one-to-one correspondence with those of the foliation 
defined by <1>. 

Theorem 3: Let (l/J, ¢ ) be a canonical transformation of 
the time-dependent mechanical system (T *Q X lR, W H)' The 
contact manifold ¢ (T*Q XlR, wH)=(T*Q XlR, ¢*wH) is 
isomorphic to the contact manifold (Sr (l/J. <I> ), i; * no), where 
i; is the natural inclusion of Sr(l/J* <1» in T*(Q X lR). 

Proof The diffeomorphism fi; = fioi; is such that 
fi;¢.wH = (fiol/J-loi;)*wH = (ir-lol/J-10i;)*fi~WH' From 
Theorem 2 it follows thatfi~wH = i~no, and, consequently, 

fi;·¢.w H = (¢-Ioi;)*no = i;·no· 

Theorem 4: If(l/J, ¢ ) is a canonical transformation of the 
time-dependent mechanical system (T *Q X lR, W H)' then 

¢.wH =WK' (3.1) 

where K = KOtOH' - I and r ,.- r 

(3.2) 

is a function KEA O(T*(Q XlR)). 
Proof Let K be defined by K = ¢. <I> - u. Then, the 

identity KOi; + uOi; = r permits us to write 

i;·no = i;·fi *r*wo + i;· [du Ad (tofi)] 

= i;· [fi *r*wo - dK Ad (tOfi)] . 

On the other hand, 

fi;·w K = fi;· [ r*wo - d (Koi; 0fi; - I) A dt ] 

= i;· [ fi *r*wo - dK A d (tOfi)] 

and the relation i;·no = fi;*w K follows. 
It is noteworthy that the new Hamiltonian K is not de­

fined on T*Q XlR but on T*(Q XlR), i.e., K does generally 
depend on the variable u because of the difference 
l/J. u ;;- u W.p' may depend on it. Consequently, the func­
tion K depends on the choice of the constant value r. 

On the other hand, the existence of the function K is 
assured for any H as a consequence of the canonical charac­
ter of the transformation. 

Theorem 5: Let (l/J ,¢ ) be a canonical transformation of a 
mechanical system (T *Q X lR, W H)' The closed 2-form 
Wo = r*wo transforms as follows: 

¢.wo = Wo - da 

with 

(3.3) 

Here W.p-' denotesthe,£estrictionofW.p-' to T*Q XlR 
by means of Sr(l/J. <1», i.e., W.p-' = W.p-' 0fi; - I. 

Proof The 2-form l/J.wH i~given by ¢*9!.o - d(¢.H) 
Ad (¢. t). On the other hand, K = ¢.H + W.;,-'; hence 

WK = Wo - d (¢.H) Adt - dW.p-' Adt, and the result of the 
theorem follows. 

Only time-preserving canonical transformations are 
usually considered, and in this particular case the theory we 
are proposing reduces to the standard one. 

Definition 2: A standard canonical tranformation of 
(T *Q X lR, W H) is a canonical transformation (l/J ,¢ ) such that 
¢.t = t. 

As a consequence of Theorem 5, a standard canonical 
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transformation changes Wo to Wo - d W.p _ ' A dt. Moreover, 
the next theorem shows that the new Hamiltonian K does 
not depend on u. 

Theorem 6: If(l/J ,¢ ) is a standard canonical transforma­
tionof(T*Q XlR, WH)' the new HamiltonianK factorizes as 
K = KOfi' where k is a function of A O(T*Q XlR). 

Proof Let Wo be the pullback ofwo by fi, i.e., Wo = fi *wo· 
Then ¢ Wo = fi*"'.wo and therefore . ~ -
l/J*wo = Wo - d (W.p ,ofi) Ad (tofi). Neither ¢.wonorwo de-
pend on the variable u and the corresponding u indepen­

dence of the function W.p-' implies that W.p-' does not de­
pend on the choice of the consta2.t value r. Fin~ly K can then 
be expressed as K = KOfi with It = (¢.H + W.p-'). 

As a corollary of this theorem we find that a standard 
canonical transformation can also be considered as a diffeo­
morphism ¢ of T *Q X lR such that 

¢.WH=W~ with K=¢.H+W.p-', (3.4) 
A 0 
Wif. ,EA (T*Q XlR), 

(3.5) 

which is the usual definition of canonical transformation. 1,3 

In fact, the comparison of the theory in the extended phase 
space formalism we are developing to the standard one pro­
ceeds via the group homomorphism L1: Cant T *Q X lR) 
-Diff(T*Q XlR), given by L1 (¢ ,¢) = ¢. Two canonical 
transformations (¢I' ¢ )and(l/J2' ¢ ) are physically equivalent, 
and they are related by t/!Tu = ¢iu + f o¢ *(t )ofi with 
fEA O(lR). We remark that (t/! ,id) is a symplectomorphism if 
and only if ¢*u = u + fOtOu. 

The main question is to elucidate whether a given dif­
feomorphism ¢ of T *Q X lR can be lifted to a canonical trans­
formation. 

Theorem 7: Let (¢ ,¢) be a canonical transformation. 
Then, 

(i) There exists W,p ,EA O(T*Q XlR) such that 

¢.wo=wo-dW", ,Adt+d(¢.H)Ad(¢.t-t) 
(3.6) 

(ii) ¢. t = fOt with fEAo(lR) (3.7) 

Proof The first claim follows from Theorem 5 with 
W", ' = W,p ,. Furthermore, we can compute l/J * no, and we 
obtain l/J*{)o = no + r with r defined by r = d(¢*H)ofi 
Ad (¢* t - t )ofi + d (¢* u) Ad (¢* t - t )ofi. The map l/J be­
ing symplectic, the 2-form r vanishes, and this implies the 
relati£n d (l/J* u) Ad (l/J* t )ofi = du Ad (tOfi) 
+ dW,p -, 0fiAd(tOfi) - d(¢*H)ofiAd(¢*t - t)ofi. As a 

consequence, the following equations hold: 

al/J * u a¢ * t al/J * u a¢ * t 
--·--=1, --.-- =0, 

au at au aq 

al/J* u a¢*t 
--·--=0, 

au ap 

and therefore the second statement follows. 
Theorem 8: Adiffeomorphism¢ofT*Q X lRsuch that it 

satisfies both conditions (3.6) and (3.7) can be lifted to a ca­
nonical transformation (t/!, ¢ ). An explicit solution is given 
by 
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(
d./\ -I A 

t/!.U = diJ [U + W"'-'°J-l 

+ (¢.H)0J-l] - (¢.H)0J-l. (3.8) 

Proof It suffices to show that t/! defined by (3.8) is a 
symplectomorphism. Ifwe use the condition (ii), we will ob­
tain 

(t/!. u) d (1,6. t)0J-l = [u + W", -, 0J-l + (1,6. H )0J-l] d (t0J-l) 

- (¢.H)0J-l d(¢.t)0J-l, 

and, if we substitute d (t/!. u) Ad (1,6. t )0J-l in the expression 
for t/!.flo, we will find t/!.flo = flo. 

The particular case of a nonstandard canonical trans­
formation where 1,6 is such that it only changes the time vari­
able has been used by some authors,4-8 but the fact that it can 
be considered as a symplectomorphism has not yet been 
claimed, as far as we know. Theorem 8 shows this possibility 
because such a diffeomorphism in T *Q X H can be lifted to a 
canonical transformation. Moreover, the set of all diffeo­
morphisms 1,6 of T*Q X H that can be lifted to a canonical 
transformation, i.e., L1 (Can T *Q X H), is a semi direct pro­
duct group of the subgroup of diffeomorphisms that only 
change the time to a time function by the normal subgroup of 
diffeomorphisms corresponding to standard canonical 
transformations. This means that any diffeomorphisms 1,6 
that can be lifted factorizes in a unique way as a product of 
two factors, one in each subgroup. 

4. GENERATING FUNCTIONS OF CANONICAL 
TRANSFORMATIONS 

Weare now able to apply the theory of generating func­
tions of symplectomorphisms to study canonical transfor­
mations of time-dependent systems. Before going deeper in 
such application we start by recalling some basic concepts in 
the theory of generating functions. 

Given a symplectic manifold, namely (P, fl ) a submani­
fold L CP is Lagrangian if dim L = n = ~.dim P and 
j* fl = 0, where j is the canonical injection of Lin P. There is 
then a function GL locally defined such that j*e = dGL , 

where e is such that fl = de; such a function G L is said to be 
the Weinstein generating function for L. I

•
11 A rather inter­

esting case is that ofa symplectic manifold (T*QI 
X T ·Q2. fl 18fl2) arising from the pair of symplectic mani­
folds (T*QI' fl l) and (T*Q2' fl2).The 2-form fl l8fl2 is de­
fined by fl l8fl2 = tr1'fll - TT!fl2 with 1Ti the projection of 
T*QI X T*Q2 on T*Qi (j = 1,2). A diffeomorphism t/!: 
T*QC-+T*Q2 is a symplectomorphism if and only if the 
graph of t/! is a Lagrangian submanifold. On the other hand, 
the restriction of 1T I to the graph of any function f 
T*QI-T*Q2 is a global diffeomorphism. The Weinstein 
generating function G.p of the symplectomorphism t/!: 
T*QJ-T*Q2 can be related to the corresponding Poincare 
generating function as follows: 

Proposition 1: Let t/! be a symplectomorphism t/!: 
T*QI-T*Q2' The locally defined Weinstein and Poincare 
generating functions are related (up to an additive constant) 
by 

(4.1) 
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Proof LetOi be the canonical I-form on T*Qi (i = 1,2). 
The function S.p is locally defined by t/!*02 = OJ + dS.p while 
G.p is locally defined by i*(01802) = dG.p. Then, d (G.p01TI- I) 
= (jo1T I- 1)*(01802), and, therefore, if we recall the definition 

of ()19()2' it is easy to check that d (G.p 01T1- I) = - dSt/. be-
cause of the relation d (GIb 01T1- I) = (1TIOi01T1- I)*()I 

- (1T2ojo1T I- 1)*()2 = ()I - t/!*()2' 
Hereafter only Poincare generating functions will be 

considered. It is worthy of remark the identity 
d (Sib + t/!*S Ib- I) = 0, which is easily obtained by application 
of t/!* on the relation defining dSv, ,. In general, 

SrI.,olb, = Sib, + t/!TSIb , . (4.2) 

Definition 3: A generating function of a canonical trans­
formation (t/! ,1,6) of the time-dependent system 
(T *Q X H. OJ H) is a generating function of the symplecto­
morphism t/! of(T*(Q X H), flo), i.e., it is defined by 
t/!* eo = eo + dSrI, '. It is only locally defined. 

In the particular case of a standard canonical transfor­
mation we will see that the generating function above de­
fined reduces to the usual concept. In fact, if 00 , OH' ()w~ , 

and ()K are the I-forms of T *Q X H defined by 00 = r*()o, 
()H = 00 - H dt, OK = 00 - K dt, and 
()w~ , = 00 - W", ,dt; then, if (t/!,¢ ) is a canonical transfor­
mation, 1,6. ()H - fJ.l. is a closed I-form and there is~ (locally 
defined) function Sr" such that 1,6. ()H - ()K = dS","-.. 

Lemma 1: With the above notations, the I-form ()o 

transforms as follows: 

(4.3) 

Proof The relation 1,6.00 = 1,6. ()H + (¢.H) d (1,6. t), is 
writ~n in terms of the function S", -, as follo~s: 1,6.00 = ()K 

+dS", 'r..+(¢.H)d(¢.t). WecanreplaceKby 
¢.H + W", "and we will find the relation we were looking 
for. 

As a corollary of this proposition, in the particular case 
of a ~andard canonical tranformation, 1,6.00 = ()w.-' 
+ dS", "which is the usual expression for the generating 
function. I 

We are now interested in looking for a relation between 
the generating functions Sib ' and S", ,. This i~ given by the 
next theorem, where it will be also shown that S", ,is a good 
generating function. 

Theorem 9: If (t/! ,1,6 ) is a canonical transformation of 
(T *Q X H, OJ ft ), the (locally defined) generating functionS", ' 
is related to S", ,by 

dS", , = dS", '0J-l + d (hot0J-l), (4.4) 

where hEA O(H). 
Proof We recall the definition of S",-, , t/!. eo 

= eo + dS",-, as well as the identity eo = J-l *()o + u d (t°J-l). 
Therefore, t/!. eo = (p,0t/!-I)*OO + (t/!. u) d (t0J-l0t/!-I) 
= J-l*¢.Oo + (t/!. u) d (1,6. t )0J-l. 

On the other side, if we make use of Theorem 8 and 
define a symplect0II}...0rphism ~ in (T*Q X H) by ~. u 
= (df /dt )-1 [u + Wr,-0J-l + (¢.H )0J-l] - (¢.!! )0J-l, both 

diffeomorphisms t/! and t/! are related by t/!. u = t/!. u 
+ go¢. (t )0J-l = t/!. u + go fOt0J-l, where g is a real differen­

tiable function. A comparison with t/!. eo 
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= fL:'/Jo + u d (tofL) + is",-. leads to the relation dS",-, 
= dS", -. 0fL + go 10 (tofL) d (j0tOfL) with ¢. t = I';...t. Finally, 

if h is a primitive for go/, we will find dS",-. = dS", -. 0fL 
+ d (hotOfL). 

The structure of semidirect product of the set of diffeo­
morphisms of T*Q XR that can be lifted to a canonical 
transformation as identified with the corresponding equiv­
alence classes suggests study of the generating functions as­
sociated with elements of each factor. 

Lemma 2: Let ('" ,¢ ) be a canonical transformation such 
that changes only the time t to¢. t = lot. Then W", -. isgiven 
by 

/'. (dl ) isr · W",. =(¢.H) - -I + --. 
dt at 

(4.5) 

Proof The invariance of eo under ¢. implies that 
/'. /'. 

- W1<,.-' dt + (¢.H) d(¢.t - t) + dS", -. = 0, and, there-
fore, Wr , will_be given by the expression (4.5). Th~,transfor­
mation law of (Jo given by Lemma I shows that dS", -, 
= is,,,.latdt. 

Proposition 2: Let ("', ¢ ) be a canonical transformation 
that factorizes as a product", = lo~. The generating func­
tionisS",-, =Sr' +1.SJ,-"i.e.,S",-, =I.SJ,-' +h (up 
to a constant), where ¢ is the corresponding standard canoni­
cal transformation in the factorization. 

Proof Since'" = lo¢, we obtain Sw-' = SJ, -', f ' 

= Sf ';1-I. SJ, ,(up to an ~ditive constant). The relations 
SJ, -, = SJ, .. ' °fL and S"". = S'" ' °fL + hotofL lead to the sec­
ond expression when h is a real function defined by 
h =Sr' -hOt. 

A particularly important application of canonical 
transformations is that of the Hamilton-Jacobi equation for 
the determination of Hamilton's principal function. 1.3.10-12 

We look for a generating function of the canonical transfor­
mation ",-I carrying H to equilibrium. It is given by Gw·' 
= - S"'-. 0'IT1, where 'lT1 is the projection 'lT1: T*(Q X R) 
X T*(Q XR)-+T*(Q XR)onthefirstfactor.Let'ITdenotethe 
natural projection 'IT: T *(Q X R) X T *(Q X R)-+(Q X R) 
X (Q X R). Let assume that G w-' may be written in terms of 
the local coordinates (q, t; q', t ') by means of the identifica­
tion of the graph of "'- 1 to (Q X R) X (Q X R), i.e., 
det a2G laqiap; #0. Hereafter by Sr' we will understand 
S"'-, ° 'IT 1 0'IT- 1 

The symplectic structure given on T *(Q X R) reduces 
the time-dependent case to the simpler one of time-in de pen­
dent Hamilton-Jacobi equation and therefore the symplec­
tomorphism ",-I transforming the system to equilibrium 
will be given by a generating function S"'-, satisfying the 
Hamilton-Jacobi equation <podIS",-. = r, i.e., in local co­
ordinates <p (q, as",-. laq,t,as",-. lat) = r. The subindex I in 
d 1 indicates that the differential is only with respect to the 
first coordinates. If we recall <p = H + u, the Hamilton-Ja­
cobi equation reads 

( 
asw-') asw-' 

H q'---aq,t =r---at. (4.6) 

The form of the generating function S"'-. established in 
the last proposition give us a more explicit form of the H-J 
equation. That is, the generating function S"' .. is 
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S"'-. = I.SJ, -. + Sr" where/is denoting here the part of 
the transformation ",-I that changes the time only. Hence 

and therefore 

(4.7) 

and SJ, -. = S'" -, + const, because ¢ is a standard canonical 
transformation. In the easier case of", being a standard ca­
nonical transformation, the Hamilton-Jacobi equation re­
duces to the usual form 

/'. a(S", ,ofL) 
H(dIS",-,ofL)=r- . 

at 

5. SOME APPLICATIONS AND COMMENTS 

We will show now that the generalized concept of time­
dependent canonical transformation we have developed in 
preceding sections is the appropriate one to study some 
transformations which have been used in the literature, but 
which have not been identified as canonical transformations; 
in particular, the Kustaanheimo and Stiefel transforma­
tion4

•
5 regularizing the problem of the Kepler motion and 

that used by Leach6-8 when studying a time-dependent har­
monic oscillator are nonstandard canonical transformations 
which can be factorized as indicated in Sec. 4. Both of them 
are particular examples of a broader class of problems where 
a canonical transformation arises in which the time changes 
as 

s= i~-2(t')dt' (5.1) 

with p a solution of some differential equation. Leach6-8 de­
veloped a method of finding a standard canonical transfor­
mation leading the old Hamiltonian H = p2/2 + !lli(t )q2 to 
a new Hamiltonian H' = (P 2 + Q 2)1 p2, where p is a time 
function solution of p + (j)2p = p-3. After this first step has 
been carried out, a second nonstandard canonical transfor­
mation in which only the time changes, given by (5.1), is to be 
done. 

In a similar way in the two-dimensional Kepler prob­
lem a standard canonical transformation given by 
x = q~ - q~ andy = 2qlq2 (it is remarkable that it will be no 
one-to-one if no restriction on the domain is imposed, see, 
e.g., Ref. 13) transforms the old Hamiltonian H = (p~ 

+ p~ )12m - k Ir to the new one H' = (Pi + P~ )l8mp2 
- k I p2 = (1/ p2) [ (P i + P ~ )18m - k ]. A nonstandard ca­

nonical transformation given by (5.1) is also to be done but 
the function p2 is now defined by the norm of the position 
vector running an actual trajectory. 

The fundamental point is that this transformation when 
considered as a canonical one tells us how to find a new 
Hamiltonian while so far the new Hamiltonian was an an­
satz. 

We develop more explicitly the prescription of our the­
ory for finding the new Hamiltonian: The generating func-
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tion S,p -, is constant while W,p. , is given by (4.5) and hence 
the new Hamiltonian f is K = (¢J * H) + W,p -, 
= (df Idt H¢J*H) + J!S,p ,lat. Furthermore, tP* u 
= (df Idt )-1 [u + W,p' + ¢J*H] - ¢J*H (see Theorem 

8), and, consequently, one also finds 'tP* <P 
= KOJ-l + u = (df Idt H¢J*H) + u. The choice df Idt =p2 
for f reduces both cases, the harmonic oscillator and the 
Kepler problem, to K = P 2 + Q 2 and K = (P i + P ~ )18m 
- k + p2(aS,p ,Iat), respectively. 

Finally, some remarks are in order to show that our 
formalism could be useful for the study of some constrained 
autonomous dynamical systems. For instance, the system 
given by a test particle in a gravitational field is usually for­
mulated in an extended formalism, but, because of the Ha­
miltonian constraint, it is reduced to an effective time-de­
pendent system. The relation between both systems is 
similar to that considered in this paper. A more interesting 
case is general relativity itself, because the canonical formu­
lation leads to a time-independent Hamiltonian system with 
the constraint H = 0,14.15 which is just the condition relating 
an autonomous and the corresponding nonautonomous sys­
tem in our framework. This problem will be considered else­
where. 
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The theory of stochastic electrodynamics is applied to the free particle and to the particle moving 
in a homogeneous field, leading to a complete temperature- and time-dependent description in 
phase space. After a transient time, the marginal description in configuration space coincides 
entirely with quantum mechanics, while the phase-space description is only mathematically 
related to the Wigner distribution. The Schrodinger equation appears as a natural-though 
incomplete-means of describing the statistical behavior of the electron under these conditions. 

PACS numbers: 03.65.Bz, 05.40. + j 

I. INTRODUCTION 

In the last two decades or so the theory of stochastic 
electrodynamics (SED) has been the subject of intensive at­
tention by several workers. 1 The theory starts from the rec­
ognition-that goes back to Planck2 and Nernse-ofthe 
physical reality of the zero-point radiation field with energy 
per mode !1Uu. This field is introduced into the Abraham­
Lorentz equation of motion for the electron, thus transform­
ing it into a stochastic equation that has been named after 
Braffort and Marshall.4 1t is believed that this theory may 
help in laying new foundations for nonrelativistic quantum 
mechanics, and in fact a certain progress has been achieved 
in this direction. With its help and without any quantum 
assumption, the Planck distribution has been derived,5-7 as 
well as the Van der Waals forces8

,9; the detailed behavior of 
the quantum harmonic oscillator has been explained, includ­
ing the radiative corrections 1-16; the connection with Schro­
dinger theory and the radiative corrections from quantum 
electrodynamics have also been explored in the general 

13 16-19 H . I case,' etc. owever, III more e aborated problems the 
theory has met severe difficulties, which are revealed by the 
fact that it predicts a behavior at variance with the one pre­
dicted by quantum theory. In the list of these defiant prob­
lems we must include not only nonlinear systems as the hy­
drogen atom20 or the anharmonic oscillator,21.22 but even 
some linear problems as a system of degenerate coupled har­
monic oscillators. 23 Even the free particle presents some 
problems, since only qualitative agreement has been ob­
tained up to now with quantum mechanics. 15 The situation is 
certainly confused, but if one is still confident about the po­
tentialities of SED, one is led to the obvious conclusion that 
the theory requires some revisions. 

It is not difficult to trace back a possible-although not 
necessarily the single one-source of the difficulties in the 
Abraham-Lorentz (AL) equation of motion used in SED, 
since, as is well known, this equation predicts a noncausal 
behavior of the self-interacting point charge. Fortunately, it 

a) With partial support by DGICSA. Secretaria de Educacion Publica, 
Mexico. 

is possible to construct an alternative to the AL equation for 
an extended particle that is free of noncausal behavior. In 
this equation, the usual radiation reaction term (2e2/3c3 )X of 
AL theory is substituted by an integral expression of the 
form st_ x g(ct - ct ')[x(t ') - x(t )] dt " this implying that the 
motion at a given time depends on all past accelerations, i.e., 
on the whole trajectory. The kernel g(ct) is related to the 
spatial structure of the extended particle, as explained in the 
literature. 24

•
25 Elsewhere we make an attempt to explore the 

theory to the simplest possible problem, namely, the free 
particle. In spite of the simplicity of the problem, the theory 
is highly nontrivial and demands the use of sophisticated 
techniques and long calculations, several of which are still in 
progress. Therefore, it seems preferable to try to explore this 
problem with simple even if approximate means, as those 
afforded by usual SED, in spite of the shortcomings of this 
theory, a task to which we devote the present paper. 

To partially overcome the difficulties associated with 
the AL equation we will pay attention only to the asymptotic 
behavior of the system. It is clear that the structure of the 
particle may play an important role-even an essential 
one-on the motion of a free particle only for short times, 
but once the transient has disappeared, the dynamics will be 
practically independent of the structure, if we are allowed to 
neglect small radiative corrections to the self-energy. This is 
confirmed by the explicit calculations (see, e.g., Ref. 25). 
Hence by considering only the predictions of the theory for 
times long enough we are able to apply the AL equation to 
the free particle as an approximate representation of the 
more elaborate theory. Since adding a constant force hardly 
makes any important calculational difference, we here inves­
tigate not the free particle, but the particle acted on by a 
homogeneous field, thus extending somewhat the range of 
applicability ofthe theory. On the other hand, from the point 
of view of the principles, this last problem has the great ad­
vantage of allowing us to make legitimate use of the AL 
equation, by assuming an external homogeneous force that is 
everywhere much stronger than the radiation reaction 
force. 27 

The asymptotic phase-space distribution obtained may 
be compared with the one predicted by quantum mechanics: 

2751 J. Math. Phys. 24 (12). December 1983 0022-2488/83/122751-11 $02.50 © 1983 American Institute of Physics 2751 



                                                                                                                                    

Both distributions are different but related by a Gaussian 
integral transform, a result that has been suggested in the 
literature on repeated occasions,28 though never convincing­
ly demonstrated, and that seems to be valid only in this case. 
On the other hand, the marginal distribution in configura­
tion space predicted coincides with the usual quantum me­
chanical one at any temperature; thus the simplest possible 
way of studying the statistical behavior of the free particle in 
configuration space is just by solving Schrodinger's equa­
tion. In this way a natural link is established between usual 
quantum theory and SED for the free particle and for the 
particle in a homogeneous field, in spite of the fact that there 
exist important differences between the predictions of both 
theories. 

A point which is worth mentioning is that SED predicts 
for the free particle a fixed minimum asymptotic variance for 
the velocity; unfortunately, the numerical value ofthis quan­
tity is strongly cutoff dependent, and hence we may offer, for 
the time being, only a rough preliminary estimation of its 
value. Nevertheless, this is an important prediction, since 
quantum mechanics affords no means to evaluate it. Due to 
the fact that the dispersion of the velocity of the free particle 
attains a constant finite value, the final average energy is also 
a constant, thus suggesting that in the long run an energetic 
equilibrium between the particle and the zero-point radi­
ation field is reached. However, at the end of the paper a 
spectral analysis of the power exchanged between particle 
and field shows that an intensive instantaneous exchange of 
energy between the different modes of the field takes place, 
even under the condition of constancy of the average kinetic 
energy, thus extending for the present linear case earlier re­
sults of Boyer. 29 

II. STOCHASTIC ELECTRODYNAMICS FOR THE 
PARTICLE IN A HOMOGENEOUS FIELD 

The Braffort-Marshall equations for a point charge act­
ed on by a constant external force F is the AL equation 

mx = F + eE(t ) + mrx, (1) 

where 

(2) 

Here, as has become customary in the study of nonrelativis­
tic problems in SED, 1,4 we approximate the Lorentz force by 
its electric part eE(t), written in the long-wavelength (or di­
pole) approximation. The random field E(t ) is assumed to 
have a Gaussian distribution with zero average and autocor­
relation given by the Wiener-Khinchin theorem 

(Ei(t )Ej(t ') = Dij fC SE(W, T)cos w(t - t ') dw, (3) 

with a power spectrum SE(W, T) given by Planck's law at 
temperature T: 

S E(W, T) = (2w3/31TC3
) [ 1 + 2/(ef3liu

, - 1)], (4) 

where, as usual, f3 represents the inverse absolute tempera­
ture in units of the Boltzmann constant: 

(5) 

Here a difficulty appears, namely, that Planck's distribution 
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includes the zero-point contribution 

SE(W, 0) = (21l/31TC3 )Wl, 

which is not integrable over the whole frequency spectrum. 
Since a deeper theory of the vacuum that may solve this 
fundamental problem is still lacking, we will go around this 
problem when necessary by introducing an appropriate cut­
off, as has been done in previous work.4

.
7

,16,18 

As is well known, the solutions to Eq. (1) may exhibit 
"runaway" behavior, which can be eliminated by demand­
ing that x-+O as t---+ 00, as proposed by I vanenko and Soko­
lov. 30 By an integration by parts and under this condition, 
Eq. (I) takes the form 

mx = F + eEm(t), 

where 

has the power spectrum 

Sm = SE(w)/(1 + r(2
), 

(6) 

(7) 

(8) 

as follows immediately from Eq. (3). Equation (6) shows 
preacceleration with respect to the stochastic force Em (t) 
only [see Eq. (7)], being free of this problem with respect to 
the external force as this external force has a constant value. 

We assume well-defined (nonstochastic) initial condi­
tions x(O) = X o, p(O) = Po; then Eq. (6) has the solutions 

p(t) mX(t)=po+Ft+eLEm(tl)dt l, (9a) 

x(t) = Xo + (1/m)L p(t ') dt I. (9b) 

For the average of these equations over the ensemble of real­
izations of the stochastic field Em (t ), recalling that (Em) 
= 0, we get 

(p(t) = Po + Ft, 

(x(t) = Xo + (po/m)t + (Fl2m)t 2, 

(lOa) 

(lOb) 

whereas the correlations between the different components 
ofp(t) and x(t) become 

(1Ia) 

(Xi(t)pj(t ' ) = (Xi(t)(Pj(t ' ) + (lIm)L dt l Cij(tl' t'), 

(lIb) 

(X,(t )Xj(t ') 

= (Xi(t) (xj(t ') + (lIm 2)L dtlL' dt2 Cij(tl' t2), (lIc) 

where the tensor Cij(t, t ') is given by 

Cij(t, t') = e2LdtlL' dt2(Emi(tdEmj(t2)' (12) 

With the help of Eqs. (3) and (7), Eq. (12) may be given the 
form 

Cij(t, t ') = e2Dij i oc 

dw Sm(W)L dtlL' dt2 cos W(tl - t2 ) 

or, performing the time integrations, 
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Cij(t, t') 

=e2oijL'" dw [Sm (w)/lil] 

X [ 1 - cos wt - cos wt' + cos w(t - t ')] 

and also 

LCij(S, t ') ds 

= e20ij fO dw[ Sm(w)/w3
] 

x [wt - wt cos wt ' - sin wt + sinwt ' 

+ sinw(t - t ')], 

L dsL' ds' Cij(s, s') 

= e20ij fO dw [Sm (W)/W4] 

X [w2tt' - wt 'sin wt - wt sin wt 

+ 1 - cos wt' + cosw(t - t ') - cos wt ]. 

(13a) 

(13b) 

(13c) 

From these results and Eqs. (11) we see that all covariance 
matrices are diagonal. In particular, we get for the variance 
ofp; 

o;(t) = 2e2fo [Sm(w)/w2
] (1 - coswt) dw, 

the covariance at equal times of x; andp;, 

rxp(t) = (l/2m)to;(t), 

and the variance of x;, 

2e2 ioo 
Sm(w) (1 2 t. u!(t) =-, dw-- -t --smwt 

m- 0 w 2 2 w 

1 1 ) - -2 coswt +-2 . 
w w 

(14) 

(15) 

Noticing that the factor within parentheses in the integrand 
is just the value of the integralSbdt' t '(1 - cos wt '), we may 
rewrite the last result in the form 

(16) 

Deriving this expression with respect to time and noticing 
Eq. (15), we see that 

du! =~r ( ) xp t . 
dt m 

(17) 

This is a general result that may be derived directly from the 
definitions of u! and r xp' 

To get an expression foro;(t), we substitute Eqs. (4) and 
(8) into Eq. (14): 

o;(t) = 2~T i oo 

1 + ~w2(1 + ~~2_ J 
X (1 - cos wt) dw. (18) 

This expression contains a divergent term, that which comes 
from the product of the first terms within the parentheses; 
we regularize it by introducing a cutoff at frequency We' as 
said before, which we select as the pair-production frequen-
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cy4,7,I6,I8 

we = 2mc2lfz. (19) 

Since TWe -a (a is the fine structure constant), we can now 
approximate the factor (1 + rw2)-1 in Eq. (18) by 1, the 
corrections being of order a 2 and hence negligible, Develop­
ing the thermal contribution to the spectrum in a power se­
ries of e - flf!w, we get from Eq. (18) 

2fz [(we 
o;(t) = 1T

m Jo w(1 - cos wt) dw 

+ 2n~1 100 

we - nflliw(1 - cos wt) dW] 

or 

o;(t) = ~ [1 - ~sin w t + _2_ - _2-COswet] 
wet e w~ t 2 W~ t 2 

where 

~ = (fzmTI1T)w~ = (8aI31T)m 2c2
. (21) 

When t> f3fz>we- I, this function reaches the stationary val­
ue 

(22) 

At room temperatures,f3fz-IO- 14 s, so that the particle will 
reach this stationary dispersion very fast. However, as T -0 
the time needed to reach the stationary value for 0; becomes 
arbitrarily large. Also, since at room temperatures 
f3 -1_10- 2 eV whereas me -1 MeV, for all usual tempera­
tures the thermal corrections to 0; are entirely negligible, 
and we may approximate 0; by ~. This is quite understan­
dable, since the energy m/2 of the modew of the zero-point 
field greatly exceeds the thermal contribution to the spec­
trum at the same frequency w, unless the temperature 
reaches extremely high values. Therefore, for t>we- 1 and not 
unusually high temperatures we may write the variance of 
the momentum as 

0;, =~. (23) 

Obviously, if we assumed that the initial momentum is dis­
tributed with variance 0;0' but uncorrelated with the radi­
ation field, instead ofEq, (23) we would get 

0;; = a2pO; + ~. (24) 

These results assign to the parameter ~ the meaning of the 
minimum (or intrinsic) asymptotic momentum variance for 
the free particle at temperature T = 0 (the presence of the 
homogeneous field does not affect this result). According to 
Eq. (21), ~ is strongly cutoff-dependent; in particular, for 
the selected cutoff [see Eq. (1)] it takes a fairly high value that 
corresponds to an energy associated to these fluctuations of 
order amc2

, and which will usually be treated as part of the 
self-energy of the free particle, by means of a renormaliza­
tion procedure. 

These results, whose numerical value depends on the 
value adopted for We and hence must be considered merely a 
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crude evaluation of order of magnitude, are related to an 
effect discussed several years ago by Boyer5 and lately also 
by Rueda. 7 The Boyer effect may easily be shown by noticing 
that for We-ex), the variance of the momentum of the parti­
cle grows without limit, which means that the zero-point 
radiation field may accelerate free particles to any arbitrarily 
high velocity. In his penetrating analysis on the origin of the 
Planck spectrum,5 Boyer restores equilibrium by confining 
the particles in a box and assuming that the radiation energy 
lost during the collisions with the walls accounts for the ba­
lance. In his tum, Rueda7 sees in Boyer's effect a possible 
mechanism for explaining the high velocities attained by cos­
mic ray particles. 

It is possible to write Eq. (20) in closed form in terms of 
the function 

00 1 
¢(z) = I -2--2' 

n=ln +z 
(25a) 

whose numerical value for real z may be calculated with the 
formula (Ref. 31, p. 36) 

I ~=~(coth1TZ- _1_). 
n=ln+z 2z 1TZ 

(25b) 

We get 

a;(t) = u6 [I - ~ sin wJ + _2_ (I - cos Wet)] 
wet W~t2 

+ u6(/3~J2[: 
_¢(_t )_t!!..¢(_t )]. 

/3fz dt /3fz 
(26) 

With this result and Eq. (15) we get a closed expression for 
rxp(t). To calculate U;(t), we use Eq. (16): 

a:(t)=~t2{1 +(_2 )2[~ _2¢(_t )] 
x 2m2 /3wc 6 /3fz 

+ (~)2[r _ 1 + cos wJ + In wet -In!!!.... 
~t ~ 

+ In sinh ;~ - ci (we t)]), (27) 

where r is Euler's constant. Since for t';J> /3fz';J>we- 1 the cosine 
integral ci(wet) = - S:)(cos x)lx] dx tends to zero and the 
sinh may be approximated by one-half the exponential, U; (t) 
reduces to 

a:(t) = ~ t2{1 + (_2 )2[~ + 1T/3fz _ 2¢ (_t )]} 
x 2m2 /3we 6 2t /3fz' 

(28) 

which means a quadratic asymptotic dependence on t for the 
variance of x j , 

(29) 

where a; is given by Eq. (22). 
Summing up, for t';J>/3fz the components of the correla­

tion tensors between the components of x and p at equal 
times are 

(30a) 
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(xjp) = (x j ) (p) + Dij(a;12m)t, 

(xjx) = (xj ) (x) + Dj)(a;!2m2)t 2. 

III. PHASE-SPACE DENSITY 
A. The phase-space density 

(30b) 

(30c) 

Since x(t ) and pIt ) are both linear functionals of E(t ) 
when the system is linear, and E(t ) has a Gaussian distribu­
tion, for well-defined initial values ofx and p the phase-space 
distribution is a bivariate Gaussian centered around the val­
ues (x) and (p) given by Eqs. (10) and with covariance ma­
trices given by 

a;'l = Dija;(t), 

t 
rxP'l = Dij 2m a; (t) = 8ijrxp ' 

U;. = 8ji U;(t), 
'1 " 

where U; is given by Eq. (27). Explicitly, 

(3Ia) 

(3Ib) 

(3Ic) 

P(x,p,t)= (21T)3(a:a:
I
-r2 )3/2 exp { - 2(0:0: _T2 ) 

x p xp x p xp 

X [a; (x - (X»)2 - 2rxp (x - (x»)·(p - (p») 

+ U;(p - (p)f]). (32) 

For t';J> /3fz';J>we- 1 Eqs. (30) hold and hence 
4 

...2 -2 2 Up 2 
UxUp -r xP---2 t . 

4m 

The phase-space density then takes the simple form 

PIx, p, t) = -- exp - --7 (x - (X»)2 ( 
m)3 [ 2m

2 

1Ta;t a;t-

+ - (x - (x»).(p _ (p») __ (p _ (p»)2 , 2m I] 
a;t a; 

where a; is given by Eq. (22). 

B. Comments on the validity of the formula for the 
phase-space density 

(33) 

Since in the following we will make extensive use ofEq. 
(33) it seems opportune to make some comments on it. First 
of all, we notice that this density depends on the temperature 
through a; only, which in its tum has a very weak tempera­
ture dependence, as we say in Sec. II; hence, P (x, p) is very 
insensitive to temperature changes. 

A more interesting comment refers to the validity ofEq. 
(33). In the case of a constant external force, the AL equation 
is applicable and only the term Em (t) [see Eq. (7)] may show 
preacceleration effects; but these effects are noticeable only 
for times t 5. 7, i.e., for frequencies w';J>21T17~wela, and 
hence can do no harm since they fall outside the physical 
spectrum considered. In other words, the acausal effects due 
to preacceleration are entirely negligible in this case and Eq. 
(33) is fully legitimate. A little more caution is needed when 
considering the free particle, since in this case it may be ar­
gued that the AL equation itself does not apply. In fact, for 
an absolutely free particle it does not apply, as is well 
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known27
•
32

; however, the particle we are dealing with is not 
free, but subject to the stochastic force E(t ). As stated in the 
Introduction, there are arguments to support the idea that 
the presence of this field-which at T = 0 subjects the parti­
cle to such an intense interaction that it becomes essentially 
insensitive to thermal perturbations, as we have seen-is 
enough to guarantee the applicability of the AL equation. 
This belief is reinforced by observing that the distribution 
p (x, p) given by Eq. (33) goes smoothly to a well-defined limit 
when F-D, since F enters linearly in (x) and (p). 

It is possible to confirm rigorously the validity of this 
conclusion by performing a more careful calculation, which 
we omit entirely in order not to complicate and obscure the 
present calculation, but which we may explain as follows. As 
discussed in the Introduction, it is possible to construct an 
entirely causal theory of the radiating particle, by taking its 
structure into account24

•
25

; starting from this theory, we may 
calculate pIt ) and from it the covariance ( PiPj) and its limit 
when t- 00. For example, a concrete calculation of this kind 
can be done on the basis of the results presented in §§IV of 
Ref. 25. The point is that for times long enough we recover in 
this way Eq. (14), and hence the whole of the above theory, 
thus confirming the applicability ofEq. (33) to the free parti­
cle. The advantage of the present procedure is its relative 
simplicity and clarity. 

IV. RELATIONSHIP WITH WIGNER'S DISTRIBUTION 

A. Quantum mechanics and SED are different theories 

A straightforward application of stochastic theory has 
led us to the phase-space density P (x, p, t ) as the basis for a 
complete statistical description of the behavior of the me­
chanical system. Our present purpose is to compare the 
above results with those predicted by quantum mechanics 
for the same system under the same conditions and investi­
gate if any reasonable connection may be established 
between both. First of all, we must stress that we are dealing 
with two theories that give different predictions for many 
important quantities. To show this in a simple way, we start 
from Eq. (29), which we rewrite for convenience as 

o;(t) = (cr:,/2m2)t2, (29) 

with cr:, given by Eqs. (21) and (22), and compare with the 
corresponding quantum mechanical result (which we will 
derive below), 

0; (I) = (cr:,/m2)t 2. (34) 

The word "corresponding" seems to require some explana­
tion. We are here working with a particular solution to our 
problem, namely the one that corresponds to a Gaussian 
distribution for all times. We could as well consider more 
complicated-even non-Gaussian-initial conditions, but 
this would unnecessarily complicate the problem. In the 
quantum-mechanical case we also have an infinity of possi­
ble solutions, depending on the initial conditions. We should 
therefore compare Gaussian solutions of both theories; this 
is the meaning of the word "corresponding." A word ofcau­
tion is, however, necessary: In the quantum-mechanical case 
we cannot go to the dispersionless limit (t-o) because in this 
limit the density would violate the Heisenberg inequalities. 
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The comparison can only be made for times such that the 
Heisenberg inequalities hold, as discussed in the next sec­
tion. 

As seen from Eqs. (29) and (34), both theories predict 
the same time dependence (for large times; SED gives a more 
detailed description for smaller times); nevertheless, there 
exists an essential difference, associated to the presence of 
the factor! in Eq. (29). This factor is responsible for several 
important differences in the behavior of the SED particle 
with respect to that of quantum mechanics, as we will see 
below. We will have an opportunity below to discuss several 
related points. 

Before making a deeper comparison with quantum me­
chanics, it seems worthwhile to make the following consider­
ation. Since we have assumed well-defined initial conditions, 
the initial dispersion of both Xi and Pi are zero, and so also is 
their product; for wet> (JfvJJc> 1 we have, however, that 

o;cr:, = (176/2m2)t2. 

The onset ofthe quantum regime lS is reached when this 
quantity attains a value not smaller than fz2/4. This consider­
ation offers us a heuristic interpretation of the Heisenberg 
inequalities, namely, that there exists a minimum (Heisen­
berg) time tH needed for the system to relax into the quan­
tum-mechanical regime, when starting from well-defined in­
itial conditions in phase space. With the aid of Eqs. (19) and 
(21), we may estimate this tH to be such that 

wctH ;;d1T/4v2a, 

a result that is stronger than the simple requirement We I> 1. 
This is easily understood by recalling that Eq. (29) is legiti­
mate only for We t). (JfvJJc = 2mc2/kB T, which tends to in­
finity when T -0 and is much greater than unity even for 
room temperatures. Therefore, we conclude that when Eqs. 
(30) apply, we are surely well within the quantum regime, but 
a long time is needed to reach this regime at normal or small 
temperatures. 

B. The Wigner distribution 

Now we go over to a more quantitative comparison 
with quantum mechanics. We start by constructing the 
quantum-mechanical phase-space distribution, i.e., the 
Wigner distribution of the problem, which we denote by 
Pw (x, p, t ). Let us recall that for a general potential V (x) the 
equation of evolution of Pw is33 

apw p 
--+-'VPw at m 

- )fz4 f d 3xJ d 3p' Pw(x, p', t)V(x') 

X sin ~ (x - x')·(p - p') = o. 
fz 

For V = - F'x, as is our case, this reduces to 

apw p 
--+_·VPw +F·V Pw =0. at m P 

(35) 

We see that the equation of evolution of the Wigner distribu­
tion coincides with the classical Liouville equation of the 
problem. It is easy to check that Eq. (35) does not accept a 
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solution of the form of Eq. (33); therefore, to construct the 
P w of interest, we proceed as follows. As a first step, we 
notice that Eq. (35) accepts solutions of the form 

Pw(x, p, t) = 4>l(P - (p) )4>2(X - (x) - (t !m)(p - (p»)) 

with (p) = F and (i) = (p)!m, which means that (p) and 
(x) are given by Eqs. (10). For a classical (deterministic) 
problem we would demand that p = (p) and x = (x), and, 
to guarantee that P w differs from zero only if these condi­
tions are met, we would select both functions 4» and 4>2 as 
Dirac deltas. In the present problem, as discussed previous­
ly, we are interested in a distribution which contains at least 
a Gaussian factor in the momentum with a constant vari­
ance. Therefore, we take the particular solution 

P (x p t)= 1 exp[- (p_(p»)2 
w "(fflO"oO")3 ~ 

_ (x - (x) - (p - (p»)t !m)2], 

20ix 

which reproduces the classical result in the limit 0"---->0, O"ox 
---->0. Since Eq. (35) is simultaneously a classical and a quan­
tum-mechanical law, we must take care to guarantee that 
our particular solution is indeed consistent with quantum 
mechanics. This is achieved by selecting 0" and O"Ox such that 
Heisenberg's inequality aTW)xaTW)P ~fz2!4 holds for any time, 
or, as follows directly from Pw , 

!~(oix + !~t 2!m2)~fz2!4. 
Hence, it suffices to take ~oix ~fz2!2 to guarantee consisten­
cy with quantum mechanics. For times longer than fzm!O" 
(which for 0" ~ O"p will be of the order of tH ), the time-depen­
dent contribution to O"x(t) is dominant and, as time grows, 
O"ox becomes negligible. This observation is important, since 
in the SED calculation we have arbitrarily restricted our­
selves to the case in which the initial dispersions ofx and p 
are both zero and have even made the approximation valid 
for t';t> (Jfz, which allows us to write Pin the simplified form of 
Eq. (33). Hence, in order to be able to compare both theories 
without having to complicate the calculations, we restrict 
ourselves to times t';t>tH in the quantum-mechanical case, 
which allows us to neglect O"ox. In this approximation, the 
Wigner distribution becomes 

Pw(x, p, t) 

=(1T~)-3/2e-IP--<P)l'/a'8(x_ (x) -(p- (p»)t!m). 

(36) 

This restriction, while very convenient, is not crucial to the 
development of the theory which follows. We must still se­
lect a value for ~, which we do by demanding that P and P w 

have as many desired properties in common as possible. In 
particular, since the averages of Xi and Pi are the same in 
both cases, we pay attention to their correlations. Identifying 
the averages calculated with the aid of P w with an index W, 
we easily get from Eq. (36) 

(PiPj)W = (p,)(p) +08ij~' 

(x,p)w = (x) (Pj) + A8ij(~!2m)t, 
(xix)w = (x,)(x) +A8ij(~!2m2)t2, 

where we have written for convenience 
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(37a) 

(37b) 

(37c) 

(38) 

with A to be fixed. From these results it immediately follows 
that 

aTW)x(t) = (aTW)p!m 2)t 2, (39) 

which is just Eq. (34) and justifies our previous discussion. 
Comparing Eqs. (37) and Eqs. (30), we see that no value of A 
exists that may give the same second-order moments in both 
theories; the best we can do is to take A = 1, i.e., ~ = 0;, a 
choice that we accept in what follows. With this selection, 
Pw predicts an asymptotic dispersion of the momentum 
equal to one-half of the one given by SED [see Eq. (45b) 
below], both theories predicting, however, the same value 
for ~ and T xp' Despite the fact that T xp is the same in both 
theories, the correlation factor, defined as 

(40) 

is not the same, due to the different value of O"p(t). In particu­
lar, for SED one gets from Eqs. (30) P = IN1, whereas for 
quantum mechanics one gets from Eqs. (39) p(W) = 1. The 
relationship between P and p(W) is actually independent of 
the value adopted for A, since quite generally Eqs. (37) give 

P _ Tw _ AT -Vlp (41) 
(W) - {~wx~Wp)1/2 - (,10:,10;/2)1/2 - . 

The surprising result PIW) = 1 means that in the Wigner 
distribution the variables x, and p, are totally correlated, i.e., 
that one determines the other, a result obviously incompati­
ble with a stochastic theory as SED, thus showing through a 
particular instance that QM cannot admit in general a strict­
ly statistical interpretation, or, what is equivalent, that any 
stochastic theory will necessarily give some predictions at 
variance with QM-with only "accidental" exceptions, as is 
the case of the harmonic oscillator. 16 In some sense, this 
assertion may be considered the stochastic version of von 
Neumann's theorem. 

The origin of the resultpIW) = lliesinthe8 factorofthe 
Wigner distribution. To see this, consider the auxiliary 
quantity ([a( Pi - (p;)) + (x, - (Xi) W)w, which is obvi­
ously nonnegative for real a; developing this, we get 

a2aTwiP + 2aT(wlxP + aTW)X ~O. 

For T(w, = p(W)O"(W)xO"(W)p = O"IW)xO"IW)p' the minimum of 
this inequality occurs for a = - O"IW)x! O"IW) p' With this val­
ue we get 

J[(X, - (x'»)-{O"IW)jO"IW)p)(p, - (p,»)f 

XPw(x, p) d 3X d 3p = 0, 

which demands that 

Pw{x, p, t )~8 [x - (x) - (O"IW)x!O"IW)P)(P - (p»)], 

as asserted above. 

c. Relation between the Wigner and the SED 
distribution 

This relationship is easily established by calculating the 
following integral, with a a real parameter to be determined: 
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I Pw(x, p', I )e-1P'-pl'/a' d 3p' 

= (1Ta2)3/2(~)3 exp [ _ 
1Tup al 

2m 
+ - (x - (x»)·(p - (p») 

a21 

_ ~(_1 +~)(X- (X»)2]. 
12 a: a2 

p 

Comparison with Eq. (33) shows that by selecting 
a = up we get the desired result, namely, 

P(x, p, I) = (1T0;)-3/2 I Pw(x, p', l)e- 1P'-PI
1

/o7,d 3p'. 

(42) 

Thus the SED phase-space density is given by a convolution 
of the Wigner distribution with a Gaussian in velocity space. 
As stated previously, this kind of relationship has been sug­
gested repeatedly28 as a means of avoiding some of the prob­
lems that appear when Pw(x, p) is directly interpreted as a 
phase-space density. 

As a first application of this result, we establish the gen­
eral relationship between the average of a dynamical vari­
ableA (x, p) as calculated in quantum mechanics, (A )w, or, 
according to SED, (A ), of which Eqs. (37) are particular 
examples. We get 

(A (x, p) = (1To;)-3/2(IA (x, p')e- 1P'-PI'/o7,d 3p')w' 

(43) 

Developing A (x, p') in a Taylor series around p and perform­
ing the integrations, we get 

(A (x, p) = (A (x, p)w + ~O; (V~A (x, p)w + .... (44) 

Incidentally, we notice that Eq. (44) applies also for the 
x-conditioned averages, i.e., when the integral with respect 
to x is not performed. From this result it follows that both 
theories predict the same value for the average of any dyna­
mical variable that either does not contain p (i.e., any func­
tion of x), or depends linearly on p. Hence, in particular, 

(x)w = (x), (p)w = (p), 

afwlX = U; , rlW)Xp = r XP' 
(45) 

in accordance with previous results. However, if A (x, p) con­
tains terms that depend quadratically or on higher powers of 
p, the averages will differ from one another. For example, for 
A = P iPj one gets 

(PiPj) = (PiPj)W + !o;t5ij' (46a) 

and, using Eq. (31a), we get the already discussed relation 

afwlP = !o;. (46b) 

These differences are more clearly reflected in the fact 
that whereas both phase-space distributions P and Pw lead 
to the same marginal distribution in configuration space, i.e., 

I P(x, p, I) d 3p = I Pw(x, p, I) d 3p, (47) 

the marginal distributions in momentum space are different, 
as follows by integrating Eq. (42) with respect to x. The ex-
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plicit form of the marginal distribution in configuration 
space is 

Px(x, I) =PIWlx(x, I) 

= [_m_]3exp[ _ m2
2 (x - (xW], (48) 

,[iTUpl 0;1 

whereas for the momentum space one gets 

PIWIP(P, I) = (1T0;)-3/2e -Ip - (p)I'/o7, (49) 

and 

(SO) 

The relationship betweenPlwlP andpp follows immedi­
ately from Eq. (42) and is 

pp(p, I) = (1T0;)-3/2 I PIWlp(P', l)e-IP-PI'/o7,d3p'. (51) 

Hence the two theories predict the same behavior of the 
system in configuration space, a point that we will confirm 
below more explicitly, Now, in quantum mechanics the con­
figuration space distribution is most easily determined by 
solving the Schrodinger equation. This means that the 
Schrodinger wavefunction will also furnish an exact­
though incomplete-description of the SED system. To ex­
plore more precisely the role of these functions in SED is the 
purpose of the next section. 

V. THE PHASE-SPACE DISTRIBUTION IN TERMS OF 
SCHRODINGER AMPLITUDES 

A. The quantum-mechanical case 

We want to express explicitly the phase-space density 
presented by SED in terms of solutions to the Schrodinger 
equation. Since this is quite easily achieved for the Wigner 
distribution by following the rules of quantum mechanics 
and using afterwards Eq. (42), we first concentrate on the 
quantum-mechanical problem. We shall first construct the 
density matrix in the x representation associated with Pw 
and then express the result in terms of Schrodinger ampli­
tudes. As is well known, the density matrix Pw (r, r', I ) is 
related to Pw (x, p, I) by the Weyl transform,34,35 which con­
sists of the following two successive steps: (i) First, we take 
the Fourier transform of Pw (x, p, I) with respect to the vari­
able p, to construct the function Pw (x, z, I): 

Pw (x, z, I) = I Pw (x, p, I )eI2ilf"P'z d 3p. (52) 

(ii) Secondly, in the new function we make the change of 
variables 

r = x + z, r' = x - z (53) 

and define 

pw(r, r', I) = Pw((r + r')l2, (r - r')l2/). (54) 

The resulting expresion for the density matrix is 

pw(r,r',/)=( m )3exp[_ m
2

2 (r+r'_2(r»)2 
,[iT + up ~I 

+ im (r _ r')'(r + r' _ 2(r) + 21 (P»)]. 
2fzl m 

(55) 
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To express this density matrix in terms of Schrodinger am­
plitudes, we consider the orthogonal and complete set of 
functions 

udr) = (21T)-3/2e,k.r (56) 

and develop the density matrix in terms of it 

pw(r,r',t)= fCk.k,(t,T)udr)ut,(r')d3kd3k', (57) 

where we have explicitly indicated the temperature depen­
dence coming from 07,. The functions Ck •k , (t, T) are the ma­
trix elements of the density matrix in the momentum repre­
sentation and are given by 

Ck.k' (t, T) = fpw(r, r', t )ut(r)uk, (r') d 3rd 3r' 

xexp { - ~ [Po+Ft- ~ (k+k')r 

+ i(k' - k).[ro - ~ t 2 + ~ (k' + k)t ]}, 
2m 2m 

(58) 

where we used Eqs. (10) for (r) and (p). We want to separate 
explicitly the temperature from the time dependence in this 
expression; for this purpose, it is convenient to analyze se­
parately two cases. 

1. The free particle 

If in Eq. (58) we put Fi = 0, the coefficients Ck,k' sepa­
rate quite naturally into a factor Ll k + k' (Po, T) that depends 
on the temperature through 0-T but not on time, and factors 
that depend on time but not on temperature. Calling the 
latter a k (xo, t), we may write 

Ck,k' (t, T) = Llk + k' (Po, T)adxo, t )at, (xo' t) (59) 

with 

and 

(61) 

Thus Eq. (57) takes a form in which the temperature depen­
dence of each term has been separated out: 

pw(r,r',t) 

= f Llk+ k'(PO' T)t/ldr - xo, t )t/lt, (r' - xo, t) d 3kd 3k I, 

(62) 

where the functions 

t/ldr - ro, t )-ak(rO' t )udr) 

= (21T)-3/2e - (ilik'/2mlt + ik'lr - rol (63) 

are solutions to the Schrodinger equation for a free particle 

if! at/l = - ~ V2 t/l. (64) 
at 2m 
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2. The particle in a homogeneous field of force 

When Fi of ° the procedure of separation of the varia­
bles T and t becomes somewhat more involved. To simplify 
matters, it is convenient to first introduce the variable 

q = k - (F/f!)t 

into Eq. (58), to get 

C
k

•
k

, (t, T) = (_f!_) 
3 f d 3q d 3q' e -llIo;)[po - (1i12)(q + q'IJ' 

fiio-p 

[ 
if!231 

Xexp -i(k-k')'XO+- L-
6m j~ 1 Fj 

Using the Fourier development of the 0 function, 

o (q - k) = (1/8~) f ei1q 
- kl'Y d 3y, 

and interchanging the order of the integrations, we get 

Ck,k,(t, T) = f wy.y,(Po, T)¢y(k, xo, t) 

where 

and 

Wy,y' (Po, T) = f Llq + q' (Po, t)¢ ;(q, 0, 0) 

X¢y,(q', 0, 0) d 3q dV 

A.. (k x t) = __ 1_ e - (ilIiIF·yt 
'f'y '0' (21T)3/2 

Xexp i(y - xo)·k - _1_ L _1 . 
[ 

'fz2 3 k 3 ] 

6m j~ 1 Fj 

(65) 

(67) 

(68) 

(69) 

In Eq. (7) the dependence on temperature comes only 
through the function Wy,y' that does not depend on time, 
while the time enters only in the functions ¢y(k, xo, t), which 
do not depend on temperature. The latter functions are solu­
tions to the Schrodinger equation for a constant force in the 
momentum representation: 

. a¢ fz
2k 2 

. 
If! - = - ¢ - F'(/V k - xo)¢. (70) 

at 2m 

Substituting Eq. (67) into Eq. (57), we get the desired 
development of the density matrix in the x representation: 

Pw (r, r', t) = f W y.y' (Po, T)t/ly(r - Xo, t) 

(71) 

where the Schrodinger amplitudes are given by the Fourier 
transform of the ¢Y' 

t/ly(x - xo, t) = (21T)-3/2 J ¢y(k, xo' t )eik
'
X d 3k (72) 

and are solutions to the Schrodinger equation 
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ifz ~~ = - ;: V2¢ - F·(x - xo)¢, 

which is the Fourier transform of Eq. (70). 

B. The SED case 

(73) 

With the previous results at hand one can almost imme­
diately express P (x, p, t ) in terms ofSchrodinger amplitudes. 
We start from the Fourier transform ofEq. (42), which reads 

- - - (d'/*')z' PIx, z, t) = Pw(x, z, t)e, (74) 

rewrite Pw in terms of Pw with the help of Eq. (54), and 
express the density matrix in terms ofSchrodinger ampli­
tudes; we will work out the case ~ =1= 0 only for the sake of 
brevity, but the procedure is equally well applicable to the 
free-particle case. The result is obviously 

- - (d'p/l;')Z'I PIx, z, t) = e Wy,y' (Po, T) 

x ¢y (x - Xo + z, t )¢; (x - Xo - z, t) d 3y d 3y '. 
(75) 

Performing an inverse Fourier transform, we may recast 
these results into the form 

PIx, p, t) = (2~fz)-3 I d 3ydY Wy,y' (Po, T) 

X I d 3k I d 3k' 1,6; (k', Xo, t )¢y(k, xo' t )ei(k - k')·x 

X Ie -(d'/II')z' + ilk + k' - (2/11)pJ·z d 3Z, 

where we have expressed the amplitudes ¢y(x) in terms of 
their Fourier transform ¢y(k), as given by Eq. (72). The inte­
gral over z is 

Ie - (d'/II')z' + ilk + k' - (21I1)pJ·z d 3 = ---.3 A (T) 
Z 1T .I..J k + k' p, , 

so our final result is 

PIx, p, t) = (21Tfz)-3 I d 3y dY d 3kd 3k' Wy.y'(Po, T) 

x..1 k + k'(P, T)ei(k - k')'X¢y(k, xo, t)¢; (k', Xo, t). 
(76) 

The density matrix of SED is simpler to write, since this is 
just Eq. (75) with the change of variables given by Eq. (53); 
therefore, 

( 't ) - (d'/4*'lIr - r')' ( ') (77) P r, r , = e Pw r, r , 

where the quantum-mechanical density matrix is given by 
Eq. (71). The complicated structure ofEq. (76) tends to hide 
more than it reveals; however, a simple but very important 
result may be obtained either by integrating with respect to p 
or else by taking r = r' in Eq. (77). In fact, since the relation­
ship between P (x, p) and p(r, r') is just the same as between 
Pw andpw [Eq. (54)], in SED just as in quantum mechanics 
the marginal distribution in configuration space is obtained 
by taking z = 0 in Pw [see Eq. (52)], which by Eqs. (53) 
amounts to taking r = r' = x. Hence, one gets for the mar­
ginal distribution in configuration space from Eq. (77) 

2759 J. Math. Phys., Vol. 24, No. 12, December 1983 

pIx, t) =Pw(x, x) 

= I Wy,y'(Po, T)¢y(x - xo, t)¢;(x - xo, t) d
3ydY· 

(78) 

This result is easily derived from Eq. (76) by noticing that 

I..1 k+ k' (p, T) d 3p = fz3 

and using once more Eqs. (72). Equation (78) is just the same 
as Eq. (71) with x = r = r', i.e., the quantum-mechanical 
density in x-space. We are recovering Eq. (48), but this time it 
is obvious that all the information about the distribution in 
configuration space as predicted by SED is contained in the 
quantum-mechanical wavefunctions ¢(x, t ). 

These results show also that the transition from the 
marginal distributions pix) and pIp) to the phase-space den­
sity P (x, p) is a highly nontrivial problem. Hence the almost 
purely mathematical attempts to go from usual quantum 
mechanics over to a truly statistical description in phase 
space33

•
36 are almost certainly condemned to failure as long 

as they are not furthered by physical argument, supported in 
its turn by a deeper theory, as might be, e.g., stochastic elec­
trodynamics, as in the present case. 

VI. ENERGY BALANCE 

We recall that 0; (t ) evolves from the initial value 0; (0) 
= 0 to a stationary value which is positive definite. At first 

sight it would thus seem that the free particle attains a sta­
tionary situation, in which it does not interchange any ener­
gy with the background field. We will show in this section 
that actually a more complicated situation holds, in which a 
net interchange of energy does exist between field and parti­
cle at each separate frequency. 

Multiplying Eq. (1) by v = i and rearranging, we get an 
equation for the evolution of the energy: 

(79) 

Within brackets we have the kinetic, the potential, and the 
Schott terms, whereas on the rhs we have the sum of the rate 
of energy absorbed by the particle from the field and the 
Larmor term for the power radiated by the accelerated parti­
cle. We will interpret the Schott term as the part of the elec­
tromagnetic energy bounded to the charged particle and, 
hence, as part of the energy content of the particle.37 Hence 
the expression in brackets gives the total energy ~ (t ) of the 
particle, and Eq. (79) expresses the rate of change of this 
energy as the difference between the absorbed and the radiat­
ed power. With the help ofEqs. (6), (10), (30), and (79) we get 
for the average instantaneous energy of the particle 

p~ 30; 
<~(t) =- -F'xo+-

2m 2m 

_ ~F'<p) +~ dO; , 
m 2m dt (80) 

where the last term has been calculated with the help ofEqs. 
(3) and (8) by noticing that 
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e2f (Em(t)-Em(t') dt' 

2loo 
Sm (w) . 3 dO; = 3e --smwtdw =---. 

o w 2 dt 

A1ternatively, Eq. (80) can be written as 

() 30; 31' dO; 
~(t) =(~(O)+----

2m m dt 
(81) 

Thus for t> {3fz a free particle gains a net average energy 
equal to 30;/2m, as was already discussed; this is just the 
term re1ated to the Boyer effect.5

•
7 This clear1y means that on 

the average the free particle absorbs more energy from the 
fie1d than it radiates from t = 0 to t. This may be easily dem­
onstrated by the following calculation. 

The average radiated energy from time t = 0 to t is (we 
take Fj = 0) 

WR (t) = ~ r (p2(T') dt' = 1'e
2 r (E;" (t 'I) dt' (82) 

m Jo m Jo 
and is due entirely to the stochastic acceleration to which the 
particle is subject. On the other side, the average energy ab­
sorbed from time t = 0 to t is 

WA (t) =.!..- (' (E(t ')op(t 'I) dt' 
m Jo 

Since from Eq. (7) it follows that 

E(t) = Em(t) -1'Em(t), 

by integrating the term that contains Em we may reexpress 
WA as 

WAlt) = ~ (' dt' (" dt" (Em(t ')oEm(t ") 
m Jo Jo 

1'
e2 l t 

- - «(Em(t) - Em(t'))-Em{t')) dt'. 
m 0 

By changing variables and taking the stationary charac­
ter of the field into account, we can express the double inte­
gral as fo1lows: 

e2f dt'f' dt" (Em{t')-Em(t ") 

= e2 r dtlft dt2 (Em (tl)-Em (t2) = ~o;(t). Jo tl 

Substituting this expression and its derivative in the 1ast 
result, we get 

3 31' dO; 
WA(t)=-o;{t)- --+ WRIt), (83) 

2m 2m dt 

which is just Eq. (81) (for Fj = 0), but seen from a different 
viewpoint. The fact that for sufficient1y large times (~(t) 
attains a constant value and thus the particle radiates as 
much energy as it absorbs in the average does not imply, 
however, that the system reaches an equilibrium state. In 
fact, the net average power transferred from the stochastic 
field to the particle, W A - W R = d ( ~) / dt, becomes zero; 
but a frequency analysis reveals that at all times, however 
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large, the free particle continues to pump energy from some 
fie1d modes to others, interchanging them periodically, in 
such a form that the net power transferred from or to any 
mode averages out, in time, to zero. Obviously, this net aver­
age power transferred to or from any mode integrates to zero 
over the whole spectrum for t-oo. We will see below that 
this exchange of energy between field and particle in any 
frequency interval dw is quite intense, even in the limit t- 00 • 

To see this, we fo1low a procedure similar to the one 
used above to calculate WR and WA ; omitting irre1evant 
details, we get 

WRIt) = (31'e2/m)loo Sm(w) dw (84) 

and 

or 

. 3e
2 (00 [ 1 ] 

WA(t)=-;- Jo Sm{w) -;-sinwt+1'(I-coswt) dw, (85) 

where we have made use ofEq. (3). Defining the power spec­
trum w(w) so that 

WN{t) = loo wN{w, t )dw, (86) 

where N stands for A or R, we get from Eqs. (84) and (85) 

wR(w) = (31'e2/m)Sm(w), (87a) 

wA(w, t) = wR(w) + {3e2/m)Sm(w)[(sinwt)lw -1'coswt]. 
(87b) 

We see that in fact W A (w, t) does not reach any definite limit 
as t-oo, but oscillates around the time average value W R (w); 
also, for l_ 00 the oscillating terms integrate to zero over the 
entire spectrum, thus showing that the particle reradiates a1l 
the absorbed energy, as corresponds to the stationary aver­
age energy. However, the average powers radiated and ab­
sorbed in a frequency interval dw differ from each other by 

(WA -wR)dw=(3e2/m)[Sm(w)lw]sinwtdw (88) 

(we neglect the small corrections proportional to l' since for 
all w <We' w1'«4a/3<1), a quantity that oscillates both in 
time for fixed frequency and with frequency for fixed time. 
This is the ceaseless pumping effect referred to above. The 
energies inv01ved in Eq. (88) are quite high; during a time 

interval of order 1'we have {e2 /m)1'S~C[ Sm (w)lw ]dw_a2mc2 

and for atomic times t_fz/a2mc2_1'/a3 the exchanged en­
ergy may highly exceed the rest energy of the e1ectron. 

Since the free particle is an obviously nonergodic sys­
tem, no equilibrium state exists; hence it is not surprising 
that W A (w) depends on time for all times and that W A =1= WR 
even for t_ 00, so that no balance at every frequency ever 
exists. More interesting seems to be the fact that a similar 
(but time-independent) phenomenon of energy pumping has 
been discovered in SED by Boyer,29 even for systems that 
classically do reach an equilibrium situation. Boyer sees in 
this another sign offailure if SED is to be a successful theory 
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for atomic systems. 29 Here it seems to be acceptable in prin­
ciple, yet somewhat worrying by its magnitude. 

It is clear that energy balance in SED is a delicate mat­
ter and that the understanding of this as well as of other 
problems as those mentioned in the Introduction demands 
further development and deepening of the theory. 
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A pair of operators H (0) and H (0 *) obtained by dilation into opposite directions of a model 
Hamiltonian with nonreal potential is considered. Relations between the resonant eigenfunctions 
of H(O) and H(O *) are studied. 

PACS numbers: 03.65.Ge 

INTRODUCTION 

The complex-coordinate method continues its inmarch 
into different branches of atomic and molecular physics, I 
and the need for an efficient treatment of the truly many­
body system with this technique is becoming increasingly 
apparent. One of the difficulties is that while complex co­
ordinates are used, the effects of poor convergence strike 
very quickly as the number of particles is increased. To over­
come this obstacle, the recent effort has gone into various 
directions; different types of basis sets are tested and com­
pared in the configuration interaction (CI)-type ap­
proaches,2 stabilization-type implementations of the vari­
ational method appeared,3 and approximate treatments 
based on the effective Hamiltonians4

•
5 and propagatorsfr.8 

are being attempted. 
Although the exact physical Hamiltonians are based on 

real potentials, the model and/or effective operators do not 
have to share this property. The origin of complex potentials 
in model and effective operators might be quite different. We 
may mention the (complex) potential energy in the nuclear 
motion B-O Hamiltonian studied by Moiseyev,9 the self-en­
ergy term in the Layzer operator, 10,6 or the generalized opti­
cal potential in Feshbach's formalism 11 as quite different 
cases. To avoid a misunderstanding, we emphasize that it is 
the complexity of the effective potential without any rotation 
present that we address here. 

The purpose of this paper is to investigate certain fea­
tures of the resonant solutions of the dilated Schr6dinger­
type operators with complex effective/optical potentials. In 
particular, we will be interested in the question under what 
conditions operators H (0) and H (0 *) can have conjugated 
resonant eigensolutions. [H (0) denotes, as usual, the dilated 
operator H(O) = U(O)HU -1(0), where U(O lis the dilation 
operator: 0 = a + ifJ.] The acquired information might be of 
importance for the implementation of the approximate treat­
ments. 

H(O), H(O*), AND THEIR RESONANT SOLUTIONS 

In what follows we will demonstrate that for the Hermi­
tian and real operator, say, the exact Hamiltoinan H (0), the 
resonant eigenfunctions I "pi l and I ({J i l associated with H (0 ) 
and H (0 *), respectively, satisfy the condition "pi = ({J r, but 
the latter condition does not, in general, hold for nonreal 
operators (even if they are Hermitian). 

Let's consider the operator H = H 0 + VeW ' with H be­
ing some "unperturbed" Hamiltonian containing kinetic en­
ergy T and one-particle potential energy V, and VeW being 
the two-particle potential energy, or some approximation to 
it. We will also assume that Ho itself does not show spectral 
concentrations, i.e., that the nonreal discrete spectrum of 
HoW) is empty; so VeW is the resonance-producing part. 

If VeW is real, then for OER, the entire operator H (0) is 
also real: 

H(O)f= (H(O)f*)*, 'rJ fED(HW)), OER. (1) 

If VeW is also dilation analytic in the strip {) p around the 
real axis, then for allfED (H (0)) = D (H (0)), H (O)f and 
(H (0 *)f*)* are analytic in {) p. Using the latter fact and the 
coincidence property (1), one has 

H(O)f=(H(O*)f*)*, 'rJfED(H(O)), OE{)p. (2) 

In particular, for any function from the null space of 
(H (0) - A ), e.g., for the resonance eigenfunction associated 
with a complex eigenvalue E, the property (2) gives 

H(O*)"p* = (H(O)"p)* = (E"p)* = E*"p*, t/IEN(H(O) - E). 

Thus for a real operator, in addition to 

H(O)"p=E"p, 

one also has 

H(O *)"p* = E*"p*. 

It is thus clear that, in this case, if I "pi l is a basis of 
N (H (0) - E), then l"pr l is a basis of N (H (0 *) - E*). 

(3) 

(4) 

(5) 

However, if Vow is nonreal, relation (2) cannot be ob­
tained since (1) does not, in general, hold; 

H(O)f=!=(H(O)f*)*, 3 fED (H(O)), OER. (6) 

Hence Eqs. (4) and (5) cannot, in general, be satisfied simulta­
neously. Still, they might be satisfied for somef's from 
D (H (0)). We thus have to check whether the functions of 
interest, i.e., the resonant states associated with the complex 
point spectra of H (0), are excluded from this category. 

Let's assume the contrary, i.e., that there aref's such 
that 

Ho(O)f+ VeW(O)f=EJ, fED(H(O)), E=!=E*, (7) 

Ho(O *)f* + VeW(O *)f* = E*f*· 

This is only possible when 

(8) 
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(Vetr(O *)/*)* = Vetr(O)1 = 0, 

and, consequently, 

(9) 

Ho(O)/= €f, lED (H(O)), €=I-€*, (10) 

which is impossiblefor/ED (H(O)) = D (Ho(O ))CL 2, since it 
contradicts the assumption that the nonreal discrete spec­
trum of Ho(O) is empty. 

Thus we have proven thattheoperatorsH (0) andH (0 *) 
can have conjugated resonant eigenfunctions associated 
with 4 and 4 *, respectively, if and ony if the potential Vetr is 
real valued. 

EXAMPLE 

An illustrative case is provided by considering Vetr of 
type Vetr - I f) (I I, Ibeing dilation analytic but not real 
valued:/(O) =1-1*(0 *) or 1(0) =1-1*(0). The dilated operator of 
this type becomes 

Vetr(O) = U(O)I/)(/IU-I(O) = 1/(0)(1(0*)1, (11) 

which is easily seen by noting that U -1(0) = U ( - 0) and 
ut(O) = U ( - 0 *). The latter relation holds since 

ut(O)f = (eiAIi)tl = e - iAli* I = U( - 0 *)f, (12) 

whereA is the infinitesimal generator of the dilation group. 12 

We see that Vetr(O) of type (11) is an oblique projector, 13 

V!tr(O)=l-Vetr(O), Im(O)=l-O, (13) 

but that it becomes symmetric for Im(O) = 0; so the basic 
premises of the dilation analytic theory are intact. 14 Vetr also 
satisfies the property 

V:tr(O) = Vetr(O *), 0E'{}f3' (14) 

but this is not enough for the two equations for H (0) and 
Ht(O) = H (0 *)tobesatisfied with the conjugated eigenfunc­
tions. In fact, if 

and 

H(O)q; = Ho(O)q; + If(O)(/(O*)Iq;=€q; (15) 

Ht(O)q; * = Ho(O *)q; * + 1/(0 *) (/(0 )Iq; * = €*q; *, 
(16) 

then, since 1/*(0 *) =1-1/(0 ), one must have 

(/*(0)1q;= (/(0*)lq;=0, (17) 

which leads to the contradictory result (10). 
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In this simple case it is also easily seen that, in agree­
ment with the general result of the previous section, Eqs. (15) 
and(16)can be satisifed ifand only if/*(O *) = 1(0), i.e., ifand 
only if the function entering Vetr is real valued:f*(O) = 1(0). 

SUMMARY 

The results of the previous sections indicate that in si­
tuations where the potential Vetr is required (or appears) to be 
complex, the bivariational 15 treatments based on the station­
arity of the "intermediate" expectation value 

€= (q; IH(O)I¢') 
(q;I¢') 

will split into two sets of equations 

(18) 

H(O)¢, =€¢" H(O*)q;=€*q; (19) 

whose solutions cannot be obtained from each other by 
means of the conjugation operation. 
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Envelope soliton solutions of a class of generalized nonlinear Schrodinger equations are 
investigated. If the quasiparticle number N is conserved, the evolution of solitons in the presence 
of perturbations can be discussed in terms of the functional behavior of N(772

), where 77 2 is the 
nonlinear frequency shift. For a.",N > 0, the system is stable in the sense of Liapunov, whereas, in 
the opposite region, instability occurs. The theorem is applied to various types of envelope solitons 
such as spikons, relatons, and others. 
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I. INTRODUCTION 

In the past, many systems have been shown to possess 
solitary wave solutions even if an inverse scattering solution 
is unknown. Solitary waves are defined as quasistationary 
solutions of nonlinear wave equations under the restriction 
that the physically relevant quantities are localized. In many 
physical situations, the envelopes of the waves are localized, 
and the corresponding solitary waves are usually called en­
velope solitons. A typical example is the Langmuir soliton, 1 

which, in its simplest form, is governed by a cubic nonlinear 
Schrodinger equation. 2 

A central question in soliton theory is the stability of a 
localized wave (packet) during collisions. If this problem 
cannot be solved by constructing an inverse scattering solu­
tion, the simpler question of stability against small perturba­
tions becomes important. This paper deals with latter situa­
tion for envelope solitons. A general necessary and sufficient 
stability criterion is presented. 

The question of stability for nonenvelope solitons gov­
erned by relativistically invariant field equations was dis­
cussed in the literature by many authors,3-6 and a so-called 
Q-theorem5 was obtained. Here we derive a corresponding 
N-theorem7 for Schrodinger-type envelope solitons and 
prove that the theorem is necessary and sufficient for stabil­
ity: If a (conserved) number N exists, then the soliton (indexs) 
is stable if and only if the value of Ns increases with the 
nonlinear frequency shift 77;, i.e., 

dN, >0. (1) 
d77; 

The results can be applied to a large class of envelope 
solitons. In the last section we shall discuss the three exam­
ples ofspikons, relatons, and envelope solitons of the deriva­
tive nonlinear Schrodinger equation. 

II. THE MODEL 

To be as general as possible, including all the applica­
tions8

-
19 we have in mind, let us start with the Lagrangian 

density 

.!f = ~i(tPa,tP* - tP* a,tP) - U(ltPI2) 
- ~ (3 [ax ItP12] 2 + ax tP ax tP*, (2) 

where tP is a complex envelope, the potential U is real, and (3 
is a positive constant. The equation of motion follows by the 
principle of least action, 

(3) 

Here the prime denotes a derivative with respect to the argu­
ment. Note that Eq. (3) is a generalized nonlinear Schro­
dinger equation; special forms of (3) have been derived for 
various physical situations.8

-
19 

In the following, we assume that localized and analytic 
quasistationary solutions exist. The latter we write in the 
form 

tPs = G (x, 77;)exp(i77;t), 

where G follows from 

(4) 

- 77;G + a;G + U/(G 2 )G - (3(a;G 2 )G = O. (5) 

The form of the solutions G will be discussed later [when 
evaluating the criterion (1) for various model equations]. 
Here we only note that, after multiplying by ax G, Eq. (5) can 
be integrated once, i.e., 

(6) 

Equation (6) shows that the soliton solutions follow by sim­
ple integration. 

Next, we study the constants of motion for Eq. (3). Mul­
tiplying with tP*, subtracting the complex conjugate, and 
integrating over space, we find 

a,N=O, (7) 

where the quasiparticle number 

N = L+oc
oc 

dx ItPI2 (8) 

has been introduced. 
Multiplying both sides ofEq. (3) with a,tP*, adding the 

complex conjugate (c. c), and integrating over space, we find 
the energy conservation 

(9) 

where 

(10) 
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In the following we shall only need these two conserved 
quantities; because of translational invariance, the momen­
tum conservation law is not important. 

III. INSTABILITY CRITERION AND GROWTH RATE 

Now we perturb the soliton in the form 

¢ = (G + a + ib )exp(i7];t) (11) 

and study the evolution of the perturbations a and b. In gen­
eral, the analysis should be nonlinear. Here we show only the 
linear part since the basic conclusions are not changed when 
a nonlinear calculation is performed. [A general nonlinear 
instability calculation will be presented elsewhere. 20] 

After some algebra, we obtain 

( 12) 

and 

a,b = -H_a, (13) 

where the Schr6dinger operators H + and H _ are defined as 

H+ = -a~ + 7]; - U' +(J(~G2), (14) 

( 15) 

It is not necessary to know the explicit form of G in 
order to discuss some spectral properties of H + and H _. All 
we need are the relations 

H+G=O, 

H_axG=O, 

(16) 

(17) 

and the assumption that G is a bell-shaped soliton (without 
any nodes). Then H + is positive semidefinite, and H _ has 
one negative eigenvalue, since ax G has one node. Obviously, 
H + and H _ are symmetric with respect to the scalar product 
(u I v) S =- :: dx uv [note also the definition 
(ulH Iv) = S =-:: dx uHv]. Since a, (aIG) = 0 due to (12) 
and (16), it is sufficient to treat perturbations with 
(aIG)=O. 

In the case of instability, a variational principle can be 
derived for the maximum growth rate y. Using the results of 
Refs. 21 and 22, we consider functions S being perpendicular 
to the kernel of H + and set D =0, N==-H :;: I, and F - - H _. 
Here and in the following the components of S being parallel 
to G (note H + G = 0) vanish, i.e., (s I G ) = O. 

Then, we have 

r = sup - (s IH_IO 
s (s IH:;: lis) 

<sIG) =0 

(18) 

To derive an instability criterion, we construct a S, with 
(s I G) = 0, such that (s IH -Is) < O. 

Let us consider 

(19) 

where H = IG is defined by 

H = IG = - a71;G, (20) 

and S - is an arbitrary function with (S _IH -Is _) < O. 
The latter always exists since H _ has a negative eigen­

value. 
Using Eq. (19) we find 
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(s IH_IO = - (G IH = IIG)(s_IG)2 

- (G IH =IIG)(s_IH_ls_)I)· 

Thus instability can occur provided 

(G IH = IIG) >0, 

and from Eq. (20) it is obvious that this means 

a 2Ns <0, 71, 

where Ns is the soliton quasiparticle number 

f
+ oc 

Ns = _ 00 dx G 2. 

(21) 

(22) 

(23) 

(24) 

So far, condition (23) is only sufficient for instability. In 
the next section we shall derive a sufficient criterion for sta­
bility which covers just the opposite region. 

IV. STABILITY REGION 

To discuss the stability properties, we construct a Lia­
punov functional out of the constants of motion. We choose 

-(axG)2+ U(G 2 )+ ~(axG2)2] 

+ 7];(; rf_+oooo dx [1¢1 2 
- G 2

], (25) 

where Nand Ns are defined by (8) and (24). The parameter 0 
is any large positive number; its lower limit will be deter­
mined later. 

Since L is built out of constants of motion, 

a,L=O (26) 

follows. Furthermore, 

L = 0 for ¢ = G exp(i7];t) (27) 

is trivially satisfied. All we have to show is L > 0 in a small 
neighborhood of the stationary solution; in other words, L 
should have a minimum at the stationary point. 

Calculating the first variation, we find 

DL = t+oc
oo 

dx [ - a~G - U'G 

+ {J (a~ G)G + 7];G ] D¢* + C.c. = 0, (28) 

because ofEq. (5). Using again the notation (11), (14), and 
( 15), the second variation reads 

D 2L = f-+ 00"" dx (aH _a + bH +b) 

+40_S dxaG. 7]2 [f + "" ]2 
Ns - 00 

(29) 

The stability theorem of Liapunov23 requires that L can be 
estimated in terms of the norm. Here, we only treat the sec­
ond-order term D 2 L explicitly; the higher-order contribu­
tions can be estimated easily by means of Sobolev inequal­
ities. 24 
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A. Definiteness of f>2L 

Since H + is nonnegative, we investigate (G IH -Ia). In 
the following we shall always assume 

(30) 

since otherwise instability was shown already [see criterion 
(21)]. 

Let us first consider perturbations with (a I G ) = O. We 
expand all functions in terms of eigenfunctions of H _, re­
membering that H _ has only one negative eigenvalue A_ 
corresponding to the eigenfunction e _. A function a has a 
component a _ parallel to that eigenfunction (subscript -) 
and a component a 1 perpendicular to the eigenfunction e_ 

(subscript 1). We then have 

(aIH_la) = -IA_I(a_la_) + (alIH_lal )· (31) 

Furthermore, abbreviating 

F=H _:lG, 

we get 

0= -IA_I(a_IF-) + (alIH_IF1)' 

Using Eq. (33) and Schwarz inequality, one finds 

(allH -Ial );> IA_12(a_1F _)2/(FlIH -1F1)' 

For 

we obtain 

Combining (31), (34), and (36), we get the desired result 

(alH_la);>O. 

Next, we have to allow for perturbations with 
(aIG) #0. Then2l 

inf (aIH_la) = (GIH -lIG)-1 
(aiG )2- , 

(a G),,",O 

implying 

(alH _fa) + 4e (17;IN,)(aIG)2 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

;>[(GIH ::IIG)--I +4e17~/N,](aIG)2. (39) 

Thus choosing 

e> -(GIH::1IG)N,I417; (40) 

again f> 2L;>0 follows. Inequality (40) determines a proper 
lower limit for e which we should choose in the definition of 
L, Eq. (25). 

From this rough discussion we conclude that L is non­
negative in the neighborhood of the stationary soliton state. 
Region (30) is indeed the stability region as will be proved 
next. 

B. Stability with respect to form 

From (29), we can immediately recognize that two 
modes can makef> 2L = 0: (i)b = Ganda = Oor(ii)a = axG 
and b = O. We call these the rotation and translation modes, 
respectively. The motivation for this nomenclature is the fol­
lowing. If we translate the original soliton and rotate the 
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phase, 

1 

= G (x - a l)e l1
/
o1 + ta~, (41) 

we get a soliton of the same form. Stability with respect to 
form} only requires that the perturbed soliton does not de­
viate significantly in time from a soliton of the same form 
compared with the original stationary state. Physically, it 
would be also unjustified to call a solitary wave unstable 
when the distance (metric) between the perturbed and unper­
turbed states grows in time. For example, an amplitude per­
turbation can lead to a different translation velocity whereas 
the form of the soliton is only slightly changed. An invariant 
set consisting of all functions which differ from the original 
unperturbed state by arbitrary translations and rotations in 
phase should be introduced. The distance between a per­
turbed state and the invariant set will be found by minimiz­
ing with respect to the shift parameters. This defines the so­
called closest solitary wave (reference state) being identical in 
form to the original unperturbed state. 

Since the perturbed state may show in its time evolution 
a translation and rotation, we write it in the form 

I/; = cpeh/;r [ G (x - xo) + a(x - xo, t) 

+ ib (x - xo, t) 1 eiY"eh/;r. (42) 

The reference state is then determined by 

a~i Ilcp - G(x - a¥"'11
2

1 :~:;,': = 0, 
i = 1,2, (43) 

where we use the usual Sobolev norm24 

IIA 112= f+oc~ dx [laxA 12+17~IA 1
2
]. (44) 

Evaluating (43), we find for i = 1, 

f f 'h ( au a2G) 
dx a ax --, G - f3 --, G = 0, 

x aG- ax-
(45) 

and for i = 2, 

(46) 

It is now obvious that the consistency relations (45) and (46) 
forbid the (i) rotation and (ii) translation modes (and their 
linear combinations). 

Accepting the constraints (45) and (46), which follow 
from the concept ofform stability, it is now possible to esti­
mate {j 2 L in terms of the norm. 

C. Estimate in terms of the norm 

It is needed23 to construct upper and lower bounds for 
fJ 2L in terms of the norm. Upper bounds are trivially found; 
we concentrate on the lower bounds. 

Let us first consider (b IH + Ib ). The consistency rela­
tion (46) can be written in the form 

17~(b IG) = (b la~G). (47) 

Splitting b into two parts, 

b=b,G+bl-bll +b1 , (48) 

and remembering that the continuum of H + starts at a value 
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larger than zero, we get 

(b IH+lb );;:'€I(b1 Ib1 ), (49) 

where € I is a small positive number. (Here, and in the follow­
ing, €v are positive quantities which can be chosen appro­
priately.) Using (47) and Schwarz inequality, one gets 

b ;(17;(G IG) + (axG lax G) f.;;; (b1 Ibi ) (J; G IJ;G), 
(50) 

so that the parallel component (blllb il ) can be estimated in 
terms of (b1 Ib1). Combining (49) and (50), we find 

(b IH+lb );;:'€2(b Ib). (51) 

To estimate (b IH + Ib) in terms of the norm (44), we 
need another inequality where (axb laxb ) appears. The lat­
ter follows for large numbers n [so that (n - 1)€2 is larger 
than the absolute value of the minimum of - U I + {3 a ~ G ] 
when the first term of the right-hand side of 

n(b IH+lb );;:.(b IH+b) + (n - 1)€2(b Ib) (52) 

is written out explicitly. Therefore, the estimate 

(b IH + Ib ) ;;:'€31Ib 112 

is sufficiently established. 
Similar estimates have to be performed for 

(alH -Ia) + 4017;(aIG )IN s- 1. Treating first the case 
(aIG) = 0, we can recalculate the steps (31)-(37) for 
(G IH = II G).;;; - €4. Here, we split a into the parts 

(53) 

a=iLe_ +aOaX G+a1=a_ +aO+a1. (54) 

Then we obtain, instead of (35), 

(aIH_la);;:'€s(a_la_). (55) 

Writing 

(alH _Ia) = (1 - €6)(aIH -Ia) + €6(aIH _Ia) (56) 

and inserting (55) for the first term on the right-hand side, we 
obtain after some straightforward algebra 

(aIH_la);;:'€7[(a_la_) + (a1Ial)]. (57) 

The consistency relation (45) is now needed to include the 
part (alilall ). We have 

17;(alaxG) = (ala!G). (58) 

Decomposing a! G into a form similar to (54), i.e., 

a!G=r_ +rO+rl' (59) 

we find, after some algebra (when the Schwarz inequality has 
also been applied), 

(aolao) (17; axG - rol17; axG - ro) 

.;;;(r- +rllr- +rl) 

x[(a_la_) + (a1Ial)]. (60) 

Rearranging the constants, we can estimate (00 100 ) in terms 
of (a _10 _) + (alia 1)· Combining with (57), we get 

(aIH_la);;:'€s(ala). (61) 

The arguments by which the term (axalaxa) [which 
supplements the right-hand side of (61) to Ila11 2] can be esti­
mated parallel those of the steps (52) and (53). 

On the other hand, for (aIG) #0, and 

(62) 
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we immediately find 

(aIH_la) + 4017;(aIG )2INs;;:.82a~ 

- 21alll (H _G IH _G) 1/2(ap lap) 1/2 + €sllap 112. (63) 

For large 0, the constant 8 2 becomes very large. Keeping 
part of the first term on the right-hand side of (63), combin­
ing the rest with the second term to a perfect square, and 
writing 

a~ = €9(alila ll ) + (1 - €9(G IG») 

X (ax G lax G) -I (axailiaxall ), 

we finally arrive at 

(alH -Ia) + 4017;(aIG )2INs;;:'€101IaI12. 

(64) 

(65) 

The relations (53), (61), and (65) show that a lower 
bound of L in terms of the norm exists. Together with the 
(trivially to construct) upper bound and the fact a,L = 0, 
stability in the sense of Liapunov follows for (30), i.e., 

a 2Ns >0. 
fJ, 

(66) 

V. THE CASE a .Ns = 0 
fJs 

The case (G IH = II G) = a is not covered by the pre­
vious sections. We shall prove now that in this case unstable 
modes exist. The modes will grow quadratically in time dur­
ing their initial evolution. 

When stability with respect to form is considered, the 
linearized equations for the perturbations are 

ala = H +b + xo axG, (67) 

a,b = - H _a - yoG. (68) 

Note that Eqs. (67) and (68) differ from Eqs. (12) and (13) 
since the ansatz (42) is used. 

Investigating even perturbations a and b, the consisten­
cy relation (45) demands 

xo = a (69) 

in Eq. (67), whereas Eqs. (46) and (68) lead to 

. (( au a
2
G) I ) Yo= - H_ --G-{3--G a 

aG 2 ax2 

x(G21~ -{3 a
2G). 

aG 2 axl 

Let us investigate solutions of the form 

0= ao + all + a 2t 2, 

b = bo + bIt + b2t2. 

Collecting equal powers of t, we successively find 

O 2 =H = IG, 

and 

b2 = 0, 

a l =0, 

b = 2H - IH - IG - 2(H - IH - IG I au G 
I + - + - aG 2 

_ {3 J2G G) (~ _ {3 a2
G I G 2) - I G, 

ax2 aG 2 ax2 

0 0 = - 2H = IH ~ IH = IG, 

bo=O. 
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(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 
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Note that the solvability condition requires 

(GIH=IIG) = -~a ,Ns =0. 
71, 

(79) 

Furthermore, it should be mentioned that other modes, 103 

being constant in time or varying linearly with time, exist so 12 
that the solutions (71)-(78) are not unique. Nevertheless, we 10' 

have explicitly constructed a growing mode which proves 
instability in the case a ,Ns = O. Although, within a linear 10 

71, 

instability calculation the modes seem to be only weakly 
growing, nonlinearly the instability can be quite fast, e.g., 
leading to a collapse in a finite time. 

VI. SUMMARY AND APPLICATIONS 

In this paper, we have derived a necessary and sufficient 
stability criterion for envelope soliton solutions of general­
ized Schrodinger equations. All previous investigations were 
aiming for a sufficient stability criterion. Comparing with 
the often called Q-theorem for relativistically invariant soli­
tons, there is no need to restrict the perturbations in any 
manner. For example, it is not necessary to allow only for 
perturbed states which have the same quasiparticle number 
N as the soliton, i.e., N = Ns (as it is often unnecessarily done 
for Q-stability). 

For applications it is useful to note that usually the sta­
bility criterion can be evaluated without calculating the ex­
plicit form of G (x, "I;). Let us assume that G is an even func­
tion of x, and that G is monotonically decreasing for 
O<x < 00. Making use of Eq. (6) and defining 

[ 
G 2 [1 _ 2.8G 2]1/2 

1= - dG, 
G

m
", [7J 2G 2 - U(G 2 )]1/2 

the system is stable if 

dI >0. 
d7J 

We shall discuss now three interesting applications. 
First, for spikons l3

-
15 determined by 

iat¢+a~¢+ 1¢lm¢=o, m>O, 

analytic solutions exist. We have.8 = 0 and 

U= (~m + 1)- 11¢lm+2. 

(80) 

(81) 

(82) 

(83) 

The value Gmax follows from Eq. (6) for axG Imax = 0, i.e., 

Gmax = [7J2(~m + 1)]l/m. (84) 

Then the integral I (we shall use the index 1 for this case) 
follows from Eq. (80), 

I _ 4/m - If Z dz 
1 - -"I . 

[m!2+ Ijl/m [1 - (!m + l)-lzmj 1/2 
(85) 

The criterion (81) can be immediately evaluated to yield sta­
bility for 0 < m < 4 and instability for m;;.4. 

Next, we investigate a well-known model25 for solitons 
formed by relativistic mass variation. The generalized 
Schrodinger equation is 

ia,¢+a;¢- [(1 + 1¢1 2)-1/2-1]¢=0. (86) 

Again.8 = 0, but 

U = - 2(1 + 1¢12)1/2 + 2 + 1¢1 2 (87) 
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0.6 Q8 

FIG. I. Plot of I, [see Eq. (89)] vs 1/. According to criterion (81), solitons 
Irelatons) are stable. 

and 

Gmax = 2"1/("12 - 1) (88) 

with "12 < 1. The integral (80) can be evaluated analytically, 

12 = [~1T + 1T7J2 + 37Jfl=1r 

- (1 + 27J2)arcsin fl=1r](1- "12)-5/2. (89) 

In Fig. 1, 12 is plotted as a function of "I. One clearly sees 
that 12 is monotonically increasing with "I leading to (longi­
tudinal) stability for all "I. 

In the last application we investigate a model equation 
which has been derived for various modes in plasmas, 12.25 

i at¢ + a~¢ + 1¢12¢ - .8(a~ 1¢1 1)¢ = 0, 

for.8> 1. We have 

U= ~1¢14 
and 

Gmax = YL.7J. 

Note that analytic solutions exist for 

4.8"12 < 1. 
In that regime, the integral (80) yields 

(90) 

(91) 

(92) 

(93) 

I = _1_ [2.81/2"1 + ~ (1 _ 4.87J2)ln 1 + 2.8
1/2

"1]. 
3 2.81/2 2 1-2.81/2"1 

(94) 

The functional dependence 13 = 13("1) is depicted in Fig. 
2 for various parameter values.8. A critical "Ie exists such 

D.6r-----r-------r---r----=--"-'"""'::---, 

0.5 

0.4 

0.3 0.4 0.5 

11 

FIG. 2. Plot of 13 [see Eq. (94)] vs 1/ for various parameters/:1 (shown as labels 
on the curves). According to criterion (8\). a transition from stable to unsta­
ble behavior occurs when the sign of the first derivative changes. 
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that for 1] > 1]c the system is unstable. Approximately, we 
have 

.J73 1]c :::::;0.42. (95) 

This stability region was also calculated by Litvak and 
Sergeevll using results of Kolokolov 7 for {J = O. The case 
(J #0 and, more important, the proofofinstability for 1]>1]c 

is treated here first. 
Other examples of nonlinear envelope wave equations 

can be investigated in a similar way. Generalizations to 
three-dimensional situations are in progress. 
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The Ecker-Weizel approximation technique is applied to the Schrodinger equation for a class of 
screened Coulomb potentials (Yukawa, Exponential cosine screened Coulomb and Hulthen) for 
any arbitrary angular momentum I. We find that the centrifugal term can be combined with the 
central screening potential to generate an effective Eckart potential with energy dependent 
strength parameters for which the s-wave Schrodinger equation is exactly solvable. Using this 
effective s-wave potential in the formalism of Fuda and Whiting for off-shell analysis, we obtain a 
closed expression for the off-shell Jost solutionis,! (k,q,r) in which k is the on-shell momentum, q is 
the off-shell momentum and the subscript S means screening. It turns out that for nonzero 
angular momentum, usual Jost function Is,! (k,q) can not be defined for finite screening parameter 
A. However, we find that the Jost solution, as well as the Jost function defined in the limit A _ 0, 
show discontinuities at the on-shell point q = k, similar to the observation made by van 
Haeringen [Phys. Rev. A 18, 56 (1978)] for the s-wave Hulthen potential. For the 1 = 0 case, we 
obtain explicit expressions for the off-shell and on-shell Jost solutions and Jost functions which 
possess the limiting behaviors discussed by van Haeringen for the Hulthen potential only. Our 
results not only extend previous works to higher partial waves, but at the same time indicate that 
certain limiting properties of the Jost solutions and the Jost functions are generally true for a class 
of screened Coulomb potentials. 

PACS numbers: 03.65.Nk 

I. INTRODUCTION 

During the last two decades, extensive investiga-
tions I-II have been carried out on the analytic properties of 
the Jost solution and the Jost function which are important 
ingredients in the theory ofnonrelativistic two-body scatter­
ing by spherically symmetric potentials. In a many-particle 
system, the various pairs of particles do not scatter elastical­
ly from each other, and therefore one needs off-shell quanti­
ties, in particular, the off-shell Jost solution and the Jost 
function from which one constructs T- and K-matrices. Fol­
lowing the approach of van Leeuwen-Reiner to the T-ma­
trix, 12 Fuda and Whiting6 have proposed a method in which 
closed analytic expressions for both off-shell Jost solution 
and Jost function are obtainable. In fact, several authors6-11 
have obtained analytic formulas for these quantities for a 
number of potentials, mostly for the s-wave case. Working in 
this line, van Haeringen9 has shown that for the s-wave 
Hulthen potential, the off-shell and the on-shell Jost solu­
tions and the Jost functions possess certain interesting limit­
ing behaviors. One of the interesting aspects of his work is 
that although the off-shell Hulthen-Jost solution and the 
Jost function smoothly go over to the corresponding Cou­
lomb quantities in the limit of a vanishing screening param­
eter, such limits do not exist at the on-shell point q = k due 
to the discontinuity arising out of the long-range nature of 
the Coulomb potential. 

We conjecture that the limiting properties of the Jost 
solution and the Jost function shown by van Haeringen may 

not be a special feature of the Hulthen potential only, but 
these may be inherent properties of a class of screened Cou­
lomb potentials. Furthermore, it was worthwhile to study 
whether such analytic properties of the Jost solution and the 
Jost function are retained by higher angular momentum 
states. With this motivation, we have reexamined the work 
of van Haeringen for arbitrary I for three potentials: static 
screened Coulomb or Yukawa (SSCP), 13 exponential cosine 
screened Coulomb (ECSq, 14 and the Hulthen potential. J5 

These potentials have wide applications in atomic scattering 
and nuclear and solid state physics. In Sec. II, we demon­
strate that using the Ecker-Weizel approximation (EWA) 
procedure, 16 the centrifugal term of the radial Schrodinger 
equation can be combined with the central screening poten­
tial to generate an effective Eckart potential 17 with energy 
dependent strength parameters. Since it is well known that 
the Schrodinger equation for the Eckart potential is solvable 
for the s-wave, we simulate the I-dependence of the original 
problem through the s-wave solution of the reduced Eckart 
potential. This procedure is found to work well at least for 
the bound states. 18 

In Sec. III, we use our reduced Eckart potential in the 
framework of Fuda and Whiting6 for obtaining the off-shell 
Jost solution which satisfies an inhomogeneous differential 
equation. We find that although a compact expression for 
the off-shell Jost solutionis,! (k,q,r) is obtainable, it is diffi­
cult to define the off-shell Jost function/s.l (k,q) in the con­
ventional wayl.9 for the finite screening coefficient A. How­
ever, certain limiting conditions can be achieved in the limit 
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of a vanishing screening parameter. It is found that the Jost 
solution and the Jost function in the limit A ----+ ° exhibit dis­
continuity at the point where the off-shell and the on-shell 
momentums are equal. Similar discontinuity was noted by 
van Haeringen9 for the s-wave Hulthen potential problem. 

In Sec. IV, we study the limiting properties of both off­
shell and on-shell Jost solutions and Jost functions for the s­
wave. Since our work includes the Hulthen problem which 
has been thoroughly investigated by van Haeringen,9 our 
observations are relevant for the other two potentials, i.e., 
SSCP and ECSC. It is very interesting to notice that the 
limiting behaviors of the Jost solutions and the Jost func­
tions are independent of the form of the screening potential 
or ofthe approximation scheme. This clearly indicates a gen­
erality in the analytic properties of the scattering quantities 
for a class of potentials having the same singularity structure 
at the origin. In Sec. V, we make a few concluding remarks. 

II. REDUCED ECKART POTENTIAL FROM EWA 

For our discussion, we consider the following screened 
Coulomb potentials: 

{
~)e - A'ir 

Vs(r) = Voe - A'cos(Ar)!r 

Vo..ie - A'/( 1 - e - h) Hulthen, 

SSCP, 

ECSC, (2.1) 

where A is the screening parameter. 19 In the limit ,1----> 0, 
these potentials smoothly go over to the Coulomb form 

Ve(r) = ~/r = 2yk Ir, (2.2) 

in which y is the Sommerfeld parameter. 20 In order to dem­
onstrate the applicability of the EW A procedure, we consid­
er a specific case, say, the SSCP. The radial Schrodinger 
equation for this potential is 

d2x~(r) + [E- Voe-A'lr- l(l~ 1) ]Xt(r) =0, (2.3) 
dr r 

where we have used the units such that Ii = 2m = 1. 
Following the standard substitution 

Xt(r) = exp( - ar)vtfr) (2.4) 

with 

a=~-E, 

and using the transformation of the variable 

x = e - A', (2.5) 

Eq. (2.3) becomes 

x(1 - xlv;' + (1 + 2a1A)(1 - xlv; 

+ [(VolA if(x) - (l (I + 1)/(1 - x))g(x)]v/(x) = 0, 

in which 
(2.6) 

fIx) = (1 - x)!log x, (2.7) 

and 

g(x) = (1 - X)2 Ix log2 X. (2.8) 

For screened potentials with a definite value of the screening 
parameter A, it is reasonable to assume that the effective 
maximum range of the radial coordinate r max is of the order 
-1/,1. Consequently, from (2.5), we getxmin :::::e- I

• Accord­
ing to the prescription of EW A, 16 the functionf(x) which 
varies slowly within the range e- I <x< 1 (corresponding to 
O<r<A - I) may be assumed to be a constant 

y = - (1 - e - ;,r)/(Ar), where ris some mean radial distance 
in the appropriate quantum state. The quantity g(x) is equal 
to (( 1 - e - A?)IArfeAr and this too is a slowly varying func­
tion, and thusg(x) may also be considered to be a constant to 
the first approximation. 

The advantage of considering bothf(x) and g(x) to be 
approximately constants is that Eq. (2.6) can be recast into 
the standard hypergeometric equation. This approximation 
amounts to the fact that one essentially works with an effec­
tive potential which is in the Eckart form. 17 For the poten­
tials in (2.1), we thus obtain the effective potential 

e - J.., e - A, 

VE(r) = VI + Vo , (2.9) 
1 - e - Ar - (I _ e - Ar)2 

with 

SSCP, (2.1Oa) 

{

A Vol 1 - e - Ar)/( Af') 

VI = AVO[ (I - e - A')! Ar]cos( Ar) 

AVo 

ECSC, (2.1Ob) 

Hulthen, (2.1Oc) 

and 

(2.1Od) 

For the bound state problem (with Vo = - I), the Schrodinger equation for the potential (2.9) has been solved to obtain the 
eigenenergies (in atomic units) 

_..!..[ 1 (l-e-J..?)_(n-I+{J)A]2 
2 (n -I + (J) Ar 2 

SSCP, 

Ent= -..!..[ 1 (l-e-J..?)coS(Ar)_(n-I+{J)A]2 ECSC, 
2 (n - 1+ (J ) Ar 2 

_..!..[ 1 _ (n-I+{J)A]2 
2 (n -I +(J) 2 

with 

{J = - ~ + [I (l + 1)((1 - e - J..?)IAr)2eJ..? + 1] 1/2 

and the unnormalized eigenfunctions 
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Hulthen, 

(2.lla) 

(2.llb) 

(2.11c) 

(2.12) 
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Xn/(r) = e- ar(1_ e-ArjP+ 1 

X2Fi( - n + 1+1, n -I + 1 + 2a/A + 2/3; 1 + 2a/A, e- A
'), (2.13) 

It turns out from Eq. (2.12) that P > I for any finite value of A, and P equals I only when A vanishes. In this limiting case, Eqs. 
(2.11) give the Coulomb result En = - 1/2n 2

• 

From Eq. (2.13), one restores the boundary condition 

Xnk) - ,J/+l)+OIAi, Xn/(OO) =0. (2.14) 
r~O 

It is important to point out that X n/ (r) provides for a slightly greater repulsion near the origin than is allowed in an exact 
treatment of the problem. This is the price we pay for obtaining a simple analytic solution. One of the weaknesses of the EWA 
procedure is that r cannot be determined from first principles. However, it has been observed 18

•
21 that the choice, 

r = 1/( 1/r) = n2 + 0 (A ) gives very good numerical agreement between the predicted energy values and the exact ones 
obtained from the numerical integration of the Schrodinger equation for various values of n, I, and A. This gives us confidence 
that the replacement of the [Vs(r) + I (I + l)/r] term in the Schrodinger equation by an effective Eckart potential (2.9) with 
coefficients depending on the energy-dependent parameter r, can approximately simulate the effect of nonzero I. 

III. OFF-SHELL JOST SOLUTION: LIMITING BEHAVIOR 

For obtaining the off-shell Jost solutions for the screened Coulomb potentials in (2.1) for nonzero I, we find it enough to 
consider the radial s-wave van Leeuwen-Reiner equation6

•
12 with our effective Eckart potential (2.9): 

[ :; + k 2 - VE(r) VS.l(k,q,r) = (k 2 - q2)eiqr. (3.1) 

Here, k denotes the on-shell momentum related to the energy E = k 2 + iE, E« 1, and q, an off-shell momentum. The off-shell 
Jost solution/dk,q,r) is a solution of Eq. (3.1) with the prescribed asymptotic behavior: 

The on-shell Jost solution is related to the off-shell one by 

Is.,( ± k,r) = Lim/dk, ± q,r). 
q -. k 

Making the following substitutions stepwise, 

IS.l(k,q,r) = eikrv,(r), 

e- Ar = x, 

and 

v/(x) = x" (l - x)'U,(x). 

Equation (3.1) becomes 

x( 1 - x) U;' + U; [ ( 2fl + 1 - 2~k ) - x( 2fl + 2 v + 1 _ 2~k ) ] 

+ U/[fl(P-1)~-fl(P-I)-2flV-V(V-1)+ v(v-I) 
x I-x 

+ (I _ 2ik ) J!:.... _ 11(1 _ 2ik ) _ V(1 _ 2ik ) _ ~ _ V2 _1_] 
A x r' A A A2 A2 I-x 

(3.2) 

(3.3) 

(3.4a) 

(3.4b) 

(3.4c) 

= (k 2 - q2) [Xii" _ q)/'! _ I _ Xi(k - ql/,l ]. (3.5) 
A2 

To identify Eq. (3.5) with the inhomogeneous hypergeometric equation, 22 we require that the last bracket on the left-hand 
side be independent of x. We thus get 

Ii = 0 (3.6a) 

and 

(3.6b) 

Using relations (3.6) in Eq. (3.5), one obtains 

x(1 -x)U/, + U;[C - (A + B + 1)x] - ABU,(x) = ((k 2 - q2)1A 2)[xu
-

1 
- xu]' (3.7) 
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where 

and 

A = v - ik 1..1 + ilk 2 + VJ)J/2IA, 

B=v-ikIA-i(k2+ Vd J/2/A, 

C= 1- 2iklA, 

0- = ilk - q)IA. 

A particular solution of Eq. (3.7) is given by22 

U/(x) = ((k 2 - q2)1A 2) [/,,(A,B;C;x) - /,,+ 1 (A,B;C;x)], 

(3.8) 

(3.9) 

in which the function/" (A, B; C; x) is related to a generalized hypergeometric function by 

x" 
/,,(A,B;C;x) = 3F2(1,A + o-,B + 0-;1 + o-,C + o-;x). 

C1{0-+ C-I) 
(3.10) 

This series converges when Ixl < 1; it converges when Ixl = 1 provided that Re(C - A - B) > O. In our case, Ixl = Ie ~ Arl < 1 
for any finite A. For a vanishing screening parameter, Ixl = 1, and in that case, 

Re(C -A - B) = Re(l - 2v) = (1 + 4V21A 2)1/2> O. 

Using the recurrence relation22 

(A + o-)(B + o-)fcrt- 1 (A,B;C;z) = o-(C + 0- - I)f,,(A,B;C,z) - z", (3.11) 

we finally obtain, from Eqs. (3.4a), (3.4c), (3.6), and (3.9)-(3.11), a closed expression for the off-shell Jost solution for arbitrary I: 

/s.l(k,q,r) = (1 - e ~Arteiqr[ 1 + e ~Ar{(A + o-)(B + 0-) _ ( k 2A~ q2 )} 

X 1 3F2(I,I+A+0-,I+B+0-;2+0-,I+c+0-;e~Ar)]. (3.12) 
(1 + o-)(C + 0-) 

It is easy to see that our solution (3.12) gives the correct asymptotic behavior in Eq. (3.2). For the on-shell case, k = q, i.e., 
0- = O. Thus the on-shell Jost solution for the screened Coulomb potentials for any I is given by 

r (kr)=(I_e-- Ar)Veikr[I +e~Ar AB F(11 +A 1 +B'21 +c.e~A.r)]. (3.13) 
Js.l' (1+0-)(C+0-)32' , " , 

Although we have been able to obtain analytic expressions for the off-shell and on-shell Jost solutions for alII, it is difficult to 
define the corresponding Jost functions for the I> 0 situation because of the factor (1 - e ~ Arr 

We shall now obtain the limiting relation of/s,1 (k,r) for a 
vanishing screening coefficient, analogous to Eq. (34) of Ref. 
9. As ..1- 0, one finds, from Eqs. (3.6b) and (3.8), 

v- -I, 

A - - 1+ iV oI2k = - 1+ iy, 

B - - I - 2ik 1..1 - iy, 

C~I- 2iklA. 

(3.14) 

Applying the connecting formulas 

(e -1) 
3F2(1,a,b;2,e;z) = --'----'--­

z(a - l)(b - 1) 

X [2FI(a - l,b - l;e - l;z) - 1], 
(3.15) 

and using (3.14), we obtain, from Eq. (3.13) after some simpli­
fications in the limit of the vanishingly small screening pa­
rameter A, 
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Lim/s./(k,r) 
A~O 

_eikr(Ar) ~ 12Ft ( -I + iy, - 1- 2ik 1..1 - iy; 

I - 2ik 1 A;e ~ "r). 

Further, using the relation9 

(3.16) 

Lim e - \FJ(b,b + e;e;l - zle) = U(b,b + b + l,z), 

(3.17) 

where U is an irregular solution of the confluent hypergeo­
metric equation, we derive, from small A, 

(- 2ik 1..1 )/-- iY2FJ( -/ + iy, -/- 2ik 1..1 - iy; 

1 - 2ik IA;e - Ar) 

~U( -/ + iy, - 2/,( - 2ikr)). 

Thus from Eqs. (3.16) and (3.18), we get 

( - 2ik 1..1 )1 ~ ills'! (k,r) 

~(Ar) -leikrU( -/ + iy, - 2/, - 2ikr). 

It is known that23 

U(j3,e,z) = Zl ~ cU(fJ + 1 - e,2 - e,z) 
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and so we obtain, from Eqs. (3.19) and (3.20) for small A, 

( - 2ik 1..1 )1 - i'iS.l (k,r) _ (Ar) - leikr( - 2ikr)21 + I 

X U(I + 1 + iy,21 + 2, - 2ikr) 

= ( _ 2ik 1..1 )Ie - 1Ty/2 [e ikr + 1TY/2( - 2ikr)' + I 

X U(I + 1 + iy,21 + 2, - 2ikr)J. (3.21) 

The bracketed term on the right-hand side ofEq. (3.21) is the 
Coulomb on-shell Jost solution9 

/C.I (k,r) = eikr + 1Ty/2 

X( - 2ikr) 1 + IU(I + 1 + iy,21 + 2, - 2ikr). 
(3.22) 

It is now easy to check that Eqs. (3.21) and (3.22) give 

Lim(2klA )-i'is.l(k,r) =/c.l(k,r), 
A .0 

(3.23) 

which indicates that the on-shell Jost solution for the 
screened Coulomb potentials has no limit for A ----.. 0 even 
when I #0. Our Eq. (3.23) is the generalized version of the 
van Haeringen result [Eq. (34) of Ref. 9] for any screened 
Coulomb potential for arbitrary I. 

From Eq. (3.23), it is also clear that we can define the I 
nonzero Jost function only under the limiting situation 
A ----..0. We find 

Lim Lim(2k 1..1) i)ls., (k,r) 
A ·0 r·O 

= Lim(2k 1..1) - iJ/s.l(k) = /C.l(k), (3.24) 
A .0 

where/c.l (k ) is the on-shell Coulomb Jost function. A similar 
relation was obtained by van Haeringen [Eq. (40h) of Ref. 9] 
for the s-wave case, and that is only for the Hulthen poten­
tial. 

IV. s-WAVE JOST SOLUTION, JOST FUNCTION AND 
LIMITING RELATIONS 

Here, we derive explicit expressions for the s-wave off­
shell and on-shell Jost solutions and Jost functions for three 
different screened Coulomb potentials given in (2.1). Since 
van Haeringen discussed the Hulthen problem elaborately, 
our observations are mainly concerned with SSCP and 
ECSC potentials. For the s-wave, setting I = 0 we have 

v=O, 

A = - ik 1..1 + ilk 2 + V1)
1/2IA, 

B= -ikIA-i(k2+ Vd 1/21A, 

C= 1 - 2ik 1..1. 

(4.1) 

From Eq. (3.12), we obtain the off-shell Jost solution (sup­
pressing the suffix for I ) 

/s(k,q,r) 

. [ A AB 
= e,qr 1 + e - r (1 + cr)( C + cr) 

X 3F2( 1,1 + A + cr,1 + B + cr;2 + cr,1 + C + cr,e - Ar) ] 

(4.2) 
and the off-shell Jost function 
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r (k ) _ L' r (k ) _ r (1 + cr)F (C + cr) Js ,q - tmJS ,q,r-
r· 0 r (1 + A + cr)F( 1 + B + cr) 

(4.3) 

In arriving at Eq. (4.2) from Eq. (4.1), we have applied the 
technique ofBaheti and Fuda.5 For the on-shell case, one has 
cr = O. Thus from Eqs. (4.2) and (4.3), we obtain the on-shell 
Jost solution and the Jost function 

/s(k,r) = eikr [ 1 + e - Ar(AB IC) 

X 3F2(1,1 +A,1 +B;2,1 + C;e- Ar)], (4.4) 

r (k) _ riC) 
Js - r(1 +A )F(I +B) 

(4.5) 

Our expressions (4.2)-(4.5) are identical to the corresponding 
analytic formulas derived by van Haeringen9 for the Hulth­
en potential, except the fact that our A and B depend on VI 
which is different for different screened Coulomb potentials. 
So for the finite screening parameter A, one essentially gets 
different results for different potentials. 

We have already shown in Eqs. (3.23) and (3.24) that the 
on-shell Jost solution and the Jost function show discontin­
uities in the limit A ----.. O. The same results are therefore true 
for Eqs. (4.2) and (4.5). Since there is no well-defined off-shell 
Jost function for I> 0, we could not study its limiting behav­
ior. However for the s-wave, we have obtained the off-shell 
Jost function for finite A for various screened Coulomb po­
tentials and it is worthwhile to study its limiting property. 
From Eq. (4.3), we find 

Limf~·(k,q) 
), . () 

r[1 +i(k-q)/A Jr[l-i(k+q)IA J 
r(1 + iVc/2k + ilk - q)/A )F(I - iVo/2k - ilk + q)/A) 

(4.6) 

Using the property 

r (z + a) = z" (J [I + 0 (z - I) J 
F(z +(3) 

0< arg z < 1T, 

we get 

. ( q + k ) iV
o12k Llm/s(k,q) = -- . 

A ·0 q - k 

as Z----..oo, 

Since, from Eq. (2,2), Vo = 2yk, we finally obtain 

. (q + k )iY Llm/s(k,q) = -- = /c(k,q), 
A ·0 q - k 

(4.7) 

(4.8) 

(4.9) 

where/c (k,q) is thes-wave Coulomb off-shell Jost function.') 
An identical expression was obtained by van Haeringen for 
the Hulthen potential. 

For the Hulthen off-shell Jost solution, van Haeringen 
conjectured that it should smoothly go to the Coulomb off­
shell Jost solution [see Eq. (40k) of Ref. 9] when the screening 
is switched off. We believe that this happens to other 
screened Coulomb potentials also, and hence we expect 

Lim/s(k,q,r) =/dk,q,r), q#k. (4.10) 
A~O 

Finally, we find that Eq. (4.2) admits the following inter­
changeability of the limits: 

R. Dutt and Y. P. Varshni 2774 



                                                                                                                                    

Lim Lim/s(k,q,r) = Lim Lim/s(k,q,r) = /c(k,q) 
r .. 0,.1. .. 0 A -.. 0,...---0 

and 

Lim Lim/s(k,q,r) = Lim Lim/s(k,q,r) = /s(k ), 
r • () q ., q _ k r ~. 0 

which were shown to be true only in the case of the Hulthen 
potential. 

v. CONCLUSIONS 

We have made an attempt to generalize the work of van 
Haeringen 9 on the limiting behaviors ofthe s-wave, off-shell, 
and on-shell Jost solutions and Jost functions for a class of 
screened Coulomb potentials. Extension to higher partial 
waves has been achieved through the use of Ecker-Weizel 
approximation procedure by means of which we construct 
an effective s-wave Eckart potential for which the problem is 
analytically solvable. Our analytic formula for the off-shell 
Jost solution for any I has the same limiting behavior shown 
earlier by van Haeringen for the s-wave Hulthen problem. 
For nonzero I, the second term of the Eckart potential in Eq. 
(2.9) remains, which means that there is a singularity - 1/r2 
at the origin, and hence the usual definition of the Jost func­
tion is not applicable. However, for the s-wave, we obtain 
closed analytic expressions for the off-shell and on-shell Jost 
solutions as well as Jost functions for all the screened poten­
tials considered in this paper. We have been able to demon­
strate that certain limiting behaviors of these scattering 
quantities are inherent properties of a variety of screened 
Coulomb potentials. Finally we would like to mention that 
there is no physical ambiguity in pursuing Ecker-Weizel ap­
proximation to the off-energy-shell region. 
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A new semiclassical interpretation of the Lamb shift 
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A modification of a previous semiclassical explanation of the Lamb shift is shown to be applicable 
to all levels in hydrogenic ions. The phenomenon responsible for the level shifts has not been 
considered explicitly in other quantum electrodynamic or semiclassical theories, but it is shown 
that it should be a source of observable energy changes. An approximate calculation for hydrogen 
s states gives ..1EIs = 0.25748 cm- I (experimental..1EIs = 0.2722 cm- I

), ..1E2s = 0.03755 
cm- I = 1125.7 MHz (experimental..1E2s = 0.03528 cm- I

), and..1E3s = 0.01166 cm- I 

(experimental..1E3s = 0.0088 cm -I), but more important is the demonstration of an effect which 
should apparently be involved in any theory of the Lamb shift. 

PACS numbers: 03.65.Sq 

There has been great interest in the Lamb shift ever 
since the original confirmation of the small energy difference 
between the 2SI / 2 and 2PI/2 states in hydrogen by Lamb and 
Retherford in 1947, and its almost simultaneous theoretical 
calculation by Bethe by the methods of quantum electrody­
namics. It long remained a phenomenon which was consid­
ered purely as a manifestation of quantum electrodynamic 
effects. The quantitative success of the QED calculations, 
however, did not eliminate the desire for a simple intuitive 
picture of the phenomenon. Along with the more recent re­
surgence of interest in semiclassical ideas, there have ap­
peared a number of discussions concerning the physical ori­
gin of the Lamb shift. 1 These have included both new 
physical interpretations of the QED derivation and new se­
miclassical theories based on several alternative concepts of 
its source. 2 The purpose of the following discussion is to 
suggest another, different semiclassical interpretation of the 
Lamb shift, which, although similar in spirit to recent neo­
classical ideas, is based on electromagnetic effects which 
have been previously excluded from consideration. It is sug­
gested that the true source of the Lamb shift may be found in 
the interactions involving the longitudinal electromagnetic 
fields of the atom, rather than in the transverse field effects 
almost universally assumed in both QED and semiclassical 
theories. This is not to say, however, that the shifts predicted 
by quantum electrodynamics, neoclassical theory, or ran­
dom electrodynamics are incorrect, or that additional effects 
must be included in them, but possibly that none of these 
theories has really correctly identified the actual source of 
the shifts that they calculate. As indicated below, it is neces­
sary to mesh these hypothesized longitudinal field effects 
with any effects of semiclassical radiation fields, which will 
of course still be present during atomic transitions. 

Modern QED interpretations of the Lamb shift can be 
related to different ways of ordering atomic and field opera­
tors in the Heisenberg equations of motion for the operators. 
It is thus possible to interpret the shift as a radiation reaction 
effect, a vacuum field fluctuation effect, or a combination of 
both. I The semiclassical analog of this QED calculation is 
very similar and leads to an identical level shift which in this 

al Previous address: Roane State Community College, Harriman, TN 
37748. 

case can be ascribed only to radiation reaction. The semiclas­
sical calculation, however, predicts some higher order differ­
ences from QED, such as frequency "chirps" in the emitted 
radiation and different emission line shapes. In fact, the fre­
quency variation obtained for a single two-level transition is 
such that at its midpoint, the point of maximum emission, 
there is no frequency shift at all. 3 Thus complete two-level 
transitions show no net shift due to this semiclassical radi­
ation effect. The fact that there may be no overall observable 
shift of energy levels as a result of atomic transition radiation 
is important in the present context, however, since it allows 
for the joint existence of both the transitory radiation reac­
tion effect and the semiclassical effect described below, 
which is a permanent shift of energy levels unrelated to radi­
ation reaction and which will be observable, even when the 
radiation field effects, although definitely present, will not. 
Just as the neoclassical radiation reaction shift is the semi­
classical analog of the modern QED interpretation, the pres­
ent theory can be considered in some ways to be the semiclas­
sical analog of Bethe's original QED interpretation of the 
Lamb shift as an effect of shrouding an electron in a particu­
lar atomic state with its electromagnetic field. 

In a previous paper,4 it was found that the calculation of 
atomic state energies in terms of the fields set up by the 
charge and current densities5 

p = e¢¢*, 

j = (efl/2im)(¢*V¢ - ¢V¢*) 
- (e2Imc)(ke lkm )1/2¢¢*A, (1) 

where ¢ was, in general, the transition wave function 

(2) 

provided a good way to examine certain energy adjustments 
such as the Lamb shift. The energies were obtained from the 
fields produced by the sources in Eq. (1) by means of 

UI: =_I_JE2 d 3r, 
. 81Tke 

UB =_I_JB2 d 3r. 
81Tkm 

(3) 

All electromagnetic fields of a single electron charge density 
were included in Eqs. (3); however, radiation fields, pro-
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duced while a transition was actually occurring,3 made no 
contribution to these integrals. The fields involved here were 
thus solely stationary state fields. 

For the particular case of the hydrogen 2SI / 2 - 2PI / 2 

Lamb shift, the orbiting electron in the 2p state was assumed 
to create its magnetic field B by carrying its electric field E at 
some velocity v. The fields created by this motion were thus 

E~ = y[El + (l/c)(kJkm)1/2vXB] 

~El(1 + V3 2
), 

and 

B~ = y[Bl - (l/c)(km lke)I/2vXE] 

B ~ = - y(l/c)(kmlke)I/2vE = - y(kmlke)1/2[3E, (4) 

where y = (1 - [3 2)-1/2. It was assumed that the electric 
field of the electron itself was that of the U21 ± I state and that 
it had the same form in the electron and atomic systems 
(aside from the y factor). The magnetic field was calculated 
from j21 ± I • Both fields were then perpendicular to V21 ± I 

and therefore fitted Eqs. (4). The motion of the electron thus 
created B211 and increased E211 by V3 2E211 . The energy shift 
represented by these field changes was suggested as the 
source of the Lamb shift, lowering the 2PI/2 state in energy 
by an amount equivalent to Liv = 1064 MHz = 0.0355 
cm- I . 

This simple line of argument is now revised to account 
for s-level shifts, where the orbital current densities in Eq. (1) 
are zero,3 and to allow for inclusion of the nuclear field. The 
need for such an extension is illustrated by the recent mea­
surements of the ISl/r2S1/2 transition in hydrogen by two 
photon spectroscopy.6 Although Jaynes "neoclassical" the­
ory, as mentioned previously, could possibly have been envi­
sioned as a "dynamic" radiation reaction complement to the 
previous stationary state field theory for the nS shift in some 
nS-n'P transitions,7.8 it could not be included as easily in this 
IS-2S case. In addition to this S state problem, there exists a 
disagreement of the field velocity calculation as outlined 
above with the results of recent 2SI/2 - 2PI / 2 Lamb shift 
measurements on various hydrogenic ions,9 which show 
roughly a Z 4 dependence on atomic number Z, whereas Eqs. 
(1)-(3) would imply 

(5) 

The Z dependence of the Lamb shift, however, suggests 
the proper generalization of the classical calculation. The 
nuclear Coulomb field, E+ = ke Zen/,-2, contributes a fac­
tor Z in its interactions with the electron fields, and its effects 
are certainly substantial since, for example, E+ essentially 
cancels the electron E _ over a large region of space around 
the atom, which classically represents a large energy change. 
This energy is, of course, easily shown to be equivalent to the 
ordinary potential energy of the positive-nucleus negative­
electron combination. 10 That is, 

w= fp-v+ d 3r=_1_f2E+.E_ d 3r. (6) 
81Tke 

It is therefore necessary for a classical calculation to begin 
with a complete expression for the fields in the vicinity of the 
ion. If it is again assumed that a nonzero expectation value of 
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v or L for a hydrogenic state actually implies some sort of 
movement of the charge density p = et/np· and that classical 
electrodynamics applies to the resultant fields, then a mag­
netic field B' will be created and the electric field E~ will be 
increased by a small amount as discussed previously [see Eq. 
(4)]. These changes will affect the energies contained in the 
total fields, energies which should reflect various potential 
and interaction energies of the system. The total electric field 
energy density is, with the integration being over increments 
of electron charge p _ (r)d V', 

U (r)=_I_[E +f(E' +E' +~[3'2E')dV,]2 
E 81Tke + II 1 2 1 

= 8:k
e 

[E2+ + (f E' dVJ + (f ~ [3,2E' dVJ 

+ 2E+J E' dV' + E+J [3'2E~ dV' 

+ f E'dV· f [3'2E~ dvl (7) 

Also, 

U B = (l/81Tkm) B2_ = (l/81Tke) [32E2_ . (8) 

The various terms in Eqs. (7) and (8) can now be related 
to mechanical energies of the system as follows: 

E2+ = self potential energy of nuclear p due 
to its own field. 

( f E'dV'f = self potential energy of electronp. 
(S {3'2E'dV,)2 = adjustment to above. 
S E'dV'· S [3'E'dV'= electric field correction to e- kinetic 

energy. 
(kmlke)B2_ = magnetic field correction to e­

kinetic energy. 
2E+·S E' dV' = usual interaction potential 

energy between nucleus and electron. 
E+·S [3 'E~ dV' = correction to the interaction 

energy of nucleus and electron. 

The fourth and fifth terms in this list yield the hydrogen 
Lamb shift value previously suggested. It is now apparent 
that these terms should be grouped with the first three as 
energies which do not affect the solution of the Schrodinger 
equation for the relative motion and which are unobservable. 
The sixth and seventh terms are related to the potential ener­
gy term which appears in the Schrodinger equation, and the 
sixth at least must affect the wave function frequencies, since 
it is the usual potential energy of an eigenstate. This identifi­
cation can easily be checked by a direct calculation. For 
E_ = E211 , for example/ 

_1_ fff 2E+ .Em ,-2 sin e dr de d¢ 
81Tke 

= ( - ke Z 2e2)/(4ao) = - z2(6.8) eV = (V)m' (9) 

The last energy density listed above should then also affect 
the wave function frequencies since it is evidently a part of 
this same potential energy V. But calculations such as that of 
Eq. (9) show that it has not been included. The energy value 
calculated from this term, 

John T. F. Barwick 2777 



                                                                                                                                    

(10) 

will depend on Z4 and, because of.B Z = (vlef, will be of the 
same order of magnitude as the velocity dependent energies 
previously calculated. Equation (10) is now hypothesized to 
be the principal source of the Lamb shift. 

Now the discussion so far leaves unresolved the prob­
lem of a velocity which would, through Eq. (10), provide an 
explanation of an S state Lamb shift, a shift which must be 
recognized to exist and to be in good agreement with QED 
calculations. Further consideration of the classical fields in­
volved suggests that there does appear to be one important 
source of electromagnetic fields which has been omitted in 
the previous discussion, but which might produce significant 
effects. This is, of course, the spin of the electron. The spin 
magnetic field is as large as the orbital magnetic field but, 
although some of its effects are accounted for in the fine and 
hyperfine structure of the energy levels, the charge density 
velocities and field velocities that it must represent have not 
been examined. It is shown below that such velocities will 
produce energy level shifts which will account for the S state 
Lamb shift in hydrogenic ions. 

Does the electron spin magnetic moment represent 
some current density which can be evaluated simply? There 
is such a current density which can be derived from the 
Dirac equation for the electron. The Dirac equation, written 
in two-component form, with 

is 

e[ p - (kelkm)I/Z(eic)A ].~ + (eV + meZ) c!> = Ec!>, 

e[ p - (kJkm )1/Z(ele)A] .ci-c!> + (eV + meZ)x = EX, (11) 

with a current density given by 

j = ee"'t&'" 

= ee( c!>*x*{~ ~) (!) . (12) 

For a positive energy electron, the X spinor is small and can 
be expressed, from Eq. (11), in terms of the large component 
c!> as 

e[ p - (kelkm)I/Z(ele)A] ·iTc!> 
X - (13) 

- (E+me2 -eV) . 

Substitution ofEq. (13) in Eq. (12), simplification, and rear­
rangement yield 

j = (irliI2m)[(Vc!»tc!> - c!>tVc!>J 

- (ellme2)(kjkm)1/2c!>tAc!> + (en12m)VX( c!>tiTc!». (14) 
The second term here is the vector potential term which 
provides for a semiclassical account of the Compton effect4 

and spontaneous emission,2 and the last is an expression for 
the spin current density. It can be obtained nonrelativistical­
ly as the curl of the average magnetic moment density 
m = (enI2me) (kjkm )I/2¢iT¢.11 

There will thus be electromagnetic field motion and 
consequent energy level shifts for the U n1m = U nOO S states in 
hydrogen, even though the orbital current densities of all 
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these states are zero. The current densities for the Is, 2s, and 
3s states, from Eqs. (1) and (14), are 

j 100 = (e-liZ 12mao)K ~ 2e - 2x sin ee<h 

bo = (e-liZ 12mao)K;(x - 2)(x - 4)e' sin ee<h' 

j300 = (e-liZ 12mao)K ~ (2x2 - 18x + 27) 

X(jx2-20x+54)e-2/3xsinee<h' (15) 

where K i = 1T- 1(Z lao)3, K; = (321T)-I(Z lao)3, K ~ 
= (81)-Z(31T)--I(Z lao)3, x = Zrlaa, and e<h is a unit vector in 

the ¢ direction. It is now possible to obtain the electric and 
magnetic fields produced by these states and use them direct­
ly in Eq. (10) to determine the resulting changes in energy, 
but it is mathematically simpler to transform Eq. (10) to a 
form involving potentials rather than fields. Thus by the use 
oftherelations.B'2E~ = -I3'X( I3'XE'),E' = - VV',and 
VZV'(r) = - 41Tke P' d 3r'83(r - r'),Eq.(IO)canbeconverted 
to 

( 16) 

This is the same expression as that obtained by using the 
Lorentz transformed p _ = y( Po - e - l.Bio) ~ Pot 1 + JjJ 2) in 
Eq. (6). 

Equation (16) can now be used to find the energy level 
shifts if a reasonable form for 13ns can be found. Classically 
one would expect that 13 = jlpe, which, for the Is state, for 
example, would give 

1311 = j 11.1 Plle = (Znlmeao)sinee<h' (17) 

The expressions obtained in this way, however, do not agree 
with a Z component of angular momentum of ~n and in most 
cases they become infinite at various points. So if these 
charge and current densities are to be thought of classically, 
there must be something more complicated involved than 
just a single motion of an entire charge density, and exact 
expressions must therefore await the correct description of 
the internal spin motions of the electron. 12 A reasonable ap­
proximate expression for 1301 may however be obtained from 
the expectation value of the spin velocity operator v ns and 
the form ofEq. (17). For the 2s state as a reference point, then 

(VSPin )2S = f (nI2m)IVx¢!s iT¢2sl d3r 

= f J,pled 3r = 1TZn/16mao· (18) 

Thus ifit is assumed that 132s = (1TZn/16meao) sin ee</>, Eq. 
(16) gives 

.JUzs =+ f .B~s(ke Zelr)pzs d
3
r 

= 0.037 55 cm -I = 1125.7 MHz, (19) 

which is very close to the QED and experimental values for 
the 2s Lamb shift. 

Now for the whole sequence of states Is, 2s, 3s, ns, it is 
necessary to examine how.B Z and f p _ V +d 3r must vary in 
Eq. (16). (i)2) and f p_ V +d 3r both vary as n- 2

, however the 
expectation value of v2 should actually be weighted by 
V + ex: r - I. The average val ue of v2 will then vary according to 
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TABLE I. Comparison of S level Lamb shifts.· 

ns 

Is 
2s 
3s 

LlU 

0.2575 cm- I 

0.03755 cm- I 

0.01166 cm- I 

expo 

0.2722 cm- I 

0.0373 ern - I 

0.0083 ern - I 

QED 

0.2718 cm- I 

0.0353 cm- I 

0.0\05 cm- I 

• See Refs. 2 and 6. 

where Vo = Zfz/mao' This gives (V
2)IS = 3v6, (v2bs = 1.75v~, 

and (v2hs = 1.2222v~. If the.B ~s values for n = 1 and 3 are 
adjusted according to the ratios of these numbers, Eq. (16) 
give the Lamb shifts..:l Uns shown in Table I. Experimental 
and QED values are also shown. 

In order to provide an idea of the magnitudes of the 
2S 1/2 - 2P1/2 Lamb shift for various hydrogenic ions and 
the corresponding predictions of the present Z 4 relationship, 
the results are compared in Table II. The numbers for this 
theory show simply the Z4 variation and are unadjusted for 
higher order effects which, as in the QED calculations, could 
make important corrections. 13 It should be emphasized that 
..:l U ± depends sensitively on.B and the values obtained here 
are meant mainly to show that this simple semiclassical 
method does give reasonable answers. 

Finally, how does one reconcile the fact that both Sand 
P states now seem to exhibit a shift? The answer comes from 
the fact that the spin effects must also be included in the 
nP1/2 states. This can easily be done as follows. The total 
magnetic moment of the electron in any state, including both 
orbital and spin motion, can be written as 14 

~ = (e/2mc)(ke/k m )112( j + s). (21) 

Now for the nPI12 statel = 1, s = 1I2,} = 112, and therefore 
sand j are in opposite directions (j = I + s). Thus f..lnp = O. 
The orbital effects are cancelled by the spin effects, implying 
that they are equal in magnitude. But then the net result is 
that the nPl/ 2 state is actually unshifted. For the nS I /2 state 
l = 0, s = ~,} = ~, and thus sand j are in the same direction, 
implying thatf..lns = (ke/km )112 (efz/2mc). Therefore only the 
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TABLE II. Lamb shift frequencies for the 22Pl/ 2 - 22Sl/ 2 transition in hy­
drogenic atoms and ions. 

Ion Experiment 13 This theory' 

hydrogen (H) 1057.8 MHz 1125.7 MHz 
deuterium (D) 1059 MHz 1125.7 MHz 
helium 14 040 MHz 18011 MHz 
lithium (~Li + 2) 62800 MHz 91182 MHz 
carbon (lh'C+ S

) 780GHz 1459 GHz 
oxygen (';0+ 7) 22\0 GHz 4611 GHz 
fluorine (i:: F +") 3339 GHz 11257 GHz 

., Values are uncorrected for any higher order terms, vacuum polarization, 
or nuclear size effect. 

nSl/ 2 states actually have any net field motion and accompa­
nying energy shifts. 
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It is shown that the Gel'fand-Naimark-Segal (GNS) construction can be generalized to real B .­
algebras containing an algebra ·-isomorphic to the quatemion algebra by the use of quatemion 
linear functionals and Hilbert Q-modules. An extension of the Hahn-Banach theorem to such 
functionals is proved. 

PACS numbers: 03.70. + k, 11.15. - q 

1. INTRODUCTION 

In recent years, considerable effort has been made in the 
development of quantum field theories with nonabelian 
gauge fields. 1 Since the fundamental objects described by 
theories of this type, the quanta of the gauge fields and mat­
ter fields, are not observed in experiment directly, it is a 
logical requirement on these theories that they do not admit 
direct observation of these objects. The lack of decisive re­
sults on this problem of confinement has led to the sugges­
tion that achieving a semiclassical understanding of the dy­
namics of such systems would be a useful first step.2 

It is difficult to define and study a semiclassical limit for 
a field theory of this type in three-space and one-time dimen­
sions, since there is no natural scale for achieving such a 
limit. Khriplovich,2 Giles and McLerran,3 and Adler4 have 
suggested a direction for the development of a semiclassical 
understanding of theories of this type, and in a series of pa­
pers Adler5 has worked out a systematic procedure for ob­
taining dynamical equations describing field configurations, 
and the static potentials, in a semiclassical framework. 

The correspondence between Adler's construction and 
the usual approach taken in quantum field theory has not yet 
been clarified. On the other hand, Biedenham, Sepunaru, 
and Horwitz6 have shown that the algebraic structures asso­
ciated by Adler's construction with the special case of an 
underlying V(2) gauge group can be obtained from quater­
nionic quantum theory. 

Originally proposed by Birkhoff and von Neumann,7 
some quantum mechanical aspects of vector spaces over 
quatemion multipliers (that is, vector spaces which are also 
modules) were worked out by Finkelstein, Jauch, Schimino­
vich, and Speiser8; a more complete study describing a hier­
archy of scalar products linear over real and complex subal­
gebras, as well as quaternion linear, and the projection 
operators into corresponding linear manifolds, was carried 
out by Horwitz and Biedenharn.9 The decomposition of the 
space into complex linear subspaces was utilized9 to con­
struct a tensor product and a procedure for second quantiza­
tion. 

A direct construction of a Hilbert Q-module lO of the 
type carried out by Horwitz and Biedenharn9 involves a 
somewhat ad hoc definition of the quantum state, and is jus­
tified formally through the Gleason theorem. 11 The ap­
proach taken by Cassinelli, Truini, and Biedenharn 12 utilizes 
Mackey's theory of induced representations ofimprimitivity 

a) Research supported in part by the Binational Science Foundation (BSF), 
Jerusalem. 

systems on a Hilbert Q-module, but the same assumptions 
are made on the structure ofthe states. In this paper, we shall 
start with a B • algebra over the reals, which contains, as 
additional structure, a subalgebra ·-isomorphic (under the 
same • operation) to the quaternions. With the help of the 
positive linear functionals which map the B·-algebra into 
the quatemions, and are two-sided linear (through the .­
isomorphism), we show that Gel'fand-Naimark-Segal 
(GNS) type construction can be used to represent the B·­
algebra in a Hilbert Q-module. This procedure provides a 
deeper insight into the meaning of physical states in a Hilbert 
Q-module. We prove the Hahn-Banach theorem, which 
shows that these states provide a Hausdorf topology on the 
B·-algebra. 

2. QUATERNION VALUED STATES 

Consider a B ·-algebraA over the reals, which contains 
a subalgebraAQ ·-isomorphic to the real quaternions; i.e., 

i:AQ-+Q (2.1) 

is a "'-isomorphism. There may be many such subalgebras; in 
the following, we pick one of them. 

Lemma 2.1: i is an isometry: 

(2.2) 

whereAqEAQ,i(Aq) = qEQ, IlallistheB ·-normofainA, and 
Iql is the usual quaternion norm, the real positive number 

J(i*q. The prooffollows from the observation that itA :Aq) 
= Iql2 implies A :Aq = Iq12.1 and the fact that A is a B·­

algebra (in a B "'-algebra, 12 Ilx·xll = IlxI12). 
Letp be a linear mappingp: A-+Q (we shall also use the 

term functional to describe a mapping into Q ). 
Definition 2.1: We shall say that p is two-sided quater­

nion linear (relative to AQ) if 

p(AqaAq.) = qp(a)q' 'ilAq, Aq.EAQ. 

It is positive ifp(a"'a);>O for all aEA. For positivep, if 
p(!) = 1, we shall call it a state. 

It follows that, for quaternion linear p, 

p(Aq)=q. (2.3) 

Lemma 2.2: If p is positive and two-sided quatemion 
linear, then 

p(a·) =p(a)'" 'ilaEA. 
Proof p[(a· + b ·)(a + b )] = p(a"'a) + p(b ·b ) 

+ p(a"'b ) + p(b ·a);>O. 
It follows that 

Imp(a·b) = - Imp(b ·a), (2.4) 
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where we define 

1m q = ~(q - q*), 

Re q = ~(q + q*). (2.5) 

Now, replace b in Eq. (2.4) by bAq • Equation (2.4) then be­
comes 

Im[p(a*b)q + q*p(b *a)] = O. (2.6) 

Let us take q to be a pure imaginary quatemion (the real 
component does not provide new information). Then, using 
Eq. (2.4), we see that 

1m I [1m p(a*b )]q - q[lm p(b *a)] J 

= Iml [Imp(a*b)]q + q[lmp(a*b)]J = 0, 

since the symmetric product of two imaginary quatemions is 
real. We are thus left, in Eq. (2.6), with 

Iml [Rep(a*b )]q - q Re[p(b *a)]J 

= q!Rep(a*b) - Rep(b *a)J = O. 

Since Q is a division ring, it follows that 

Rep(a*b) - Rep(b *a) = o. 
Together with Eq. (2.4), this completes the proof of the 
lemma. 

Lemma 2.3: Letp be a positive Q-linear mapping. Then, 
the Schwarz inequality 

Ip(a*b W<p(a*a)p(b *b) Va,bEA (2.7) 

is valid. 
Proof: p(a*a)~O implies p(a*a) + A. 2p(b *b ) 

+ U Re p(a*b )~o, for A. real, and hence 

[Re p(a*b W<p(a*a)p(b *b ). 

From quatemion linearity, we may replace b by bAq to ob­
tain 

(Re(p(a*b )q))2<p(a*a)p(b *b) 

for Iql2 = 1. Letuswritep(a*b) = Ip(a*b )Iu, where lul 2 = 1. 
The maximum of Re(uq) is unity, since luql2 = 1, and hence 
Eq. (2.7) follows. 

3. GNS CONSTRUCTION 

Let Vbe a vector space over the reals which is also a 
right Q-module, i.e., a vector space over the quatemions Q so 
that ifx,YEV, ql,q2EQ, 

and 

xql + yq2EV, 

(x + ylq = xq + yq, 

X(qlq2) = (Xqtlq2' 

x(ql + q2) = xql + xq2· 

Suppose, moreover, that there exists a binary mapping 
(x, y) of V X V into Q with the following properties: 

(i) (x,y)* = (y,x), 

where * is the involution in Q, 
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(ii) (x + y,z) = (x,z) + (y,z), 

(iii) (x, yq) = (x, y)q, 

(iv) (x,x) = IlxI12~O, 
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and is zero if and only if x = O. 
Definition 3.1: A right Q-module V with properties (i)­

(iv), which is closed under the topology defined by the norm 
Ilxll, will be called a Hilbert Q-module. 

Definition 3.2: The mapping A:K _K of a Hilbert Q­
module into itself will be called a quatemion linear (Q-linear) 
operator if A (xq) = (Ax)q and A (x + y) = Ax + Ay for all 
qEQ and all x, y in the domain of A. 

We are now in a position to state Theorem 3.1. 
Theorem 3.1: LetA beaB *-algebra over the reals which 

contains a subalgebra AQ *-isomorphic to the real quater­
nions Q, andp a two-sided quatemion linear state onA. Then 
there exists a representation 1Tp : A -!J(J (Kp ), where Kp is a 
Hilbert Q-module and!J(J ( Kp) is the set of bounded Q-linear 
operators on Kp . 

Proof Let f be the left ideal consisting of all elements 

aEA for whichp(a*a) = O. ThenA~A If is a homomor­

phism for which h (A ) is a Q-module over h (A Q). We define a 
scalar product in A If by 

(3.1) 

wherea'l' as are elements of the equivalent classes 77,S inA I 
f. 

We define the multiplication 77q as the equivalence class 
! aA q j. The scalar prod uct (3.1) then has the properties 

(77,5 + xl = (77,5) + (77,X), 

(77,Sq) = (77.5 )q, 

(77,S)* = (5.77). 

(77.77) = 1177112~O. 

(3.2) 

and is zero if and only if 77 = o. The first and second proper­
ties ofEq. (3.2) follow from the quatemion linearity ofp. and 
the third property from Lemma 2.2. The last property fol­
lows from the definition of A If. We therefore complete A I 
f in the topology provided by the norm 117711 to obtain a 
Hilbert Q-module which we ftenote by Kp. Elements a of A 
are mapped onto operators A on Kp by 

I aa'l I = A77 (3.3) 

for 77EKp and a'l any el~ent of the equivalence class which 
defines 77. The operator A is bounded by the norm of a in the 
B *-algebra (the functionalp is continuous; the proof is as in 
the complex case 13). A can therefore be extended to a bound­
ed (linear) mapping of Kp into itself. 

4. HAHN-BANACH THEOREM 

The validity of the Hahn-Banach theorem implies that 
the set oflinear functionals p that can be constructed on the 
B *-algebra is separating. 

Theorem 4.1: Let A be a B * -algebra over the reals which 
contains a subalgebraA Q• *-isomorphic to the real quater­
nions. Let A. be a two-sided quatemion linear functional de­
fined on a subspace YeA. which is anAQ-module and is 
bounded by the real functionp(x) = Ilxli. Then A. has a two­
sided quatemion linear extension A, which is also bounded 
by pix) and coincides with A. on Y. 

Proof We first remark thatp(x) is quatemion convex, 
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since 

p(Aax + ApY) = IIAax + ApYl1 <p(Aax) + p(ApY) 

<p(Aa )p(x) + p(Ap )p( y) 

= la/p(x) + IfJlp(y) 'VAa,ApEAQ' 

The last equality follows from Lemma 2.1. Let 

fIx) = ReA (x). 

Then! (x) is real linear and 
3 

A (x) = I e,l (A :'x). 
i=O 

Equation (4.3) follows from the fact that 

I(A :,x) = ReA (A :,x) = Re(erA (x)), 

(4.1) 

(4.2) 

(4.3) 

which projects the four real-valued components of A (x). 
By the real Hahn-Banach theorem, ! (x) has an exten­

sion L (x) to all of A, which is real linear and satisfies 

IL(x)l<p(x) 'VxEA. (4.4) 

We define the two-sided quaternion linear extension of A (x) 
by 

3 

A (x) = I eiL [Po(A :,x)] , 
i=O 

(4.5) 

where 
3 

Poy = A I A :'yA e , (4.6) 
i=O 

commutes with allAqE A Q • The left linearity of A (x) follows 
from the fact that the replacement x-Ae x induces a permu-

J 

tation of the functionals in the sum (4.5) that is compensated 
by the extraction of a factor ej from each of the e i • For exam­
ple, 

A (Ae,x) = - L [Po(A :,x)] + elL [Po(x)] 

-~L[~~~~]+~L[~~~~] 
= el { L [Po(x)] + elL [Po(A :,x)] 

+ e2L [Po(A :,x)] + e3L [Po(A :lX)] }. 
Since (4.7) 

(4.8) 

the same argument illustrated in Eq. (4.7) shows that A (x) is 
right linear also. Since A (x) is linear, it follows that for some 
q(lql = 1), 

IA (x)1 = qA (x) = A (Aqx) = ReA (Aqx) 

= L (Po(Aqx))<p(Aqx). 

Furthermore, since ptA q x) < I q Ip(x) = p(x) and 

pIx) = ptA : Aqx)< Iq* Ip(Aqx) = p(Aqx), 

p(Aqx) = pIx), (4.9) 

i.e., A (x) is bounded by pIx). 

We now show that A (x) coincides with A (x) for XEY. 
Since YisanAQ-module,A:'xAe,EY ifxEY. Hence 

L [Po(A :,xl] = l[ Po(A :,x)] (4.10) 

for XEY. However, 
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! [Po(x)] = Re A [Po(x)] 

3 

= ARe I A (A :,xAe,l 
;=0 

3 

= ARe I erA (x)ei · 
i=O 

From the quaternion multiplication table, it follows that 
3 

AI erA (x)ei = ReA (x). (4.11) 
i=O 

Hence 

I [Po(x)] = I (x), (4.12) 

which completes the proof of our theorem. We remark that 
one could alternatively decompose every x in A uniquely into 
a combination offour terms of type (4.6) with coefficientsA e" 

and use the real Hahn-Banach theorem for the extension of 
real linear functionals on elements of type Eq. (4.6) in Y to 
the subspace of elements of this type on the full algebra A. 
One can then construct a two-sided quaternion linear exten­
sion of A (x) of the form Eq. (4.5). 

Corollary 4.1: The weakest topology for which all of the 
two-sided quaternion linear functionals are continuous is 
Hausdorf. 
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A single fixed-point transformation which generates solutions to the field equations is discussed. 
The method is applied to several examples. 

P ACS numbers: 04.20.Jb 

I. INTRODUCTION 

There has been much recent interest in generating new 
solutions to the vacuum field equations by transforming 
known solutions. 1-5 One very useful transformation method 
was developed by Geroch,4 who generalized the work of 
Ehlers2 and Harrison.3 The original method is applicable to 
spaces which have one timelike Killing vector. Given a met­
ric gab with timelike Killing vector 5 a, this transformation 
technique will produce a new metricg~b with the same Kill­
ing vector. As described by Geroch,4 the new metric is gener­
ated from the base metric by projective transformations on 
the scalar norm A and scalar twist W of the Killing vector, 
where 

(1) 

Wa = €abcdSb,rs d = Da(w). 

The transformations are performed in the three-dimensional 
manifold defined by the Killing trajectories. The covariant 
derivative in this space is Da' 

The transformation is expressed in terms of a complex 
Ernst potential 7 = W + iA. The transformed potential is 
given by 

7' = (a7 + b )I(C7 + d). (2) 

In this original formulation, a particular parametrization 
was chosen, a = d = cos y and b = - C = sin y. This choice 
is one of the simplest to make. It also has the nice physical 
consequence of making the transform a rotation of potential 
functions in the orbit space.6 

This choice of parametrization has some other conse­
quences. Any bilinear transform leaves up to three points 
fixed. The single parameter form has two fixed points corre­
spondingt07 = (W,A) = (0, ± 1). One of the fixed points can 
be identified as infinity, where A takes on its asymptotic Min­
kowski value. The second fixed point is difficult to interpret. 
Using Schwarzschild parameters, for example, the second 
point occurs at r = M, a point inside the event horizon. Be­
cause of the ambiguity in the second fixed point, it is of inter­
est to examine the one-fix ed-point form. The purpose of this 
paper is to discuss the one-fixed-point transformation. 

The next section contains a brief review of the formal­
ism and the one-fixed-point transform is written down. The 
parameters of the transform are discussed. In this section we 
derive the differential equation obeyed by the parameters. In 
the last part of the paper, the transformation is applied to 
some specific examples. 

II. THE TRANSFORMATION 

A. The formalism 

Start with a vacuum solution gab possessing a single 
timelike Killing vector 5 a. The norm A and twist Wa of the 
Killing vector are given by Eq. (1). The solution gab is de­
scribed by a set of equations on a four-dimensional space M: 
gab' Geroch4 has shown that gab is also described by a set of 
equations written on the three-dimensional manifold H: hab 
of Killing trajectories hab = A (gab - SaSbl A): 

Rab = -2(7-r)-2(Dla rDbI 7), 

D 27 = 2(7 - r)-I(D7).(D7), 

(3a) 

(3b) 

where 7 = W + iA, and D is the covariant derivative in H. 
Ernse has demonstrated that Eq. (3b) is derivable from an 
action and is equivalent to the field equations in the axially 
symmetric case. He gives a prescription for generating met­
ric components from potentials satisfying this Ernst equa­
tion. 

To generate a new metric g~b from gab' one may go to H 
and look for a new solution 7' ofEq. (3b). Geroch's 7' is of the 
form (2) which he writes as 

7' = (COS(Y)7 + sin(y))/( - sin(Y)7 + cos(y)). (4) 

It is easily verified that 7' will satisfy the Ernst equation for 
constant y. Using 7', new metric components can be con­
structed.4 

The fixed points corresponding to Eq. (4) are found by 
setting 7' = 7. One obtains 70 = 7b = ± i. The positive fixed 
point corresponds to infinity, A = 1. The negative one is dif­
ficult to interpret. The choice of a fixed point at infinity is a 
good one since it ensures the asymptotic behavior of the Kill­
ing norm and twist. Instead ofEq. (4), write down Eq. (2) 
with the single fixed point 7b = 70 = (0,1). One obtains8 

1/(7' - 70) = 1/(7 - 70) + /3', (5) 

where/3' is possibly complex. This equation can be put into a 
linear form by defining the Ernst function 

5 = (i - r)l(i + r). 
With this substitution, Eq. (5) becomes 

5' = 5 + i/3, 

(6) 

(7) 

/3 = 2/3 '. The usual projective transform has /3 a constant. In 
the next section we will discuss the conditions that /3 must 
meet in order that 5 ' represent a solution to the field equa­
tions. We will find that allowing /3 to be coordinate depen­
dent leads to interesting solutions. 
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B. The parameter 

1. Differential equation for the parameter 

Equation (7) is to generate a new solution S ' to the equi­
valent field equations. It is necessary that S ' satisfy an Ernst 
equation equivalent to Eq. (3b),1 

(8) 

This requirement can be used to determine (J. Substituting 
Eq. (7) one obtains 

(til + (J1 - I)D '2t/J = 2t/J(D 't/J.D 't/J - D '(JR·D '(JR) 

+4(JRD't/J.D'(JR' (9a) 

(t/J2 +(J1 - I)D'2(JR 

= - 2(JR(D 't/J·D 't/J - D'(JR + D '(JR) 

+ 4t/JD 't/J·D '(JR' (9b) 

wheret/J = S - Im( (J),(JR = Re( (J). Wehaveassumedsreal 
for simplicity. The covariant derivative in the transformed 
space H' with hab = h ~b is D '. 

In order that S ' be a solution to the field equations, it is 
necessary that (J satisfy Eq. (9). One immediately notices the 
only constant (J solution is the trivial transformation (JI 
= const,(JR = O. Physically significant solutions will have(J 

coordinate dependent. This is a broad generalization of the 
usual constant parameter projective transform. In order that 
Eq. (5) still represents a fixed point at 00 we require 
lim_~oo ((J Ir) = O. The fixed-point condition is satisfied in 
this limit. 

2. Interpretation of (3 

In order to understand the physical significance of the 
real part of (J, examine the asymptotic form of Eq. (5). As­
suming (J real, the imaginary part of Eq. (5) is 

(10) 

Consider H: hab to be asymptotically flat in the sense of Ger­
och9 and Ashtekar and Ashtekar. IO

•
11 This means there ex­

ists a conformally related manifold Ho: fl 2hab , which at A, 
the point at infinity, is smooth on the completed manifold. 
Choose the conformal factor to be fl = (A - 1)2, 

fl' = (A ' - 1)2,12 with lim_A fl = lim_A fl' -l/r. Defin­
ing asymptotic twists CUo = lim_.A culfl, and cub 
= lim~A cu' I fl " and noting the imposed convergence of (J " 

lim_.A (3'1 r = 0 implies lim (J 'cu = 0, we have 

cub = CUo + lim (J '. (11) 
~A 

The one-fixed-point transform is a simple translation of a 
scalar twist defined at infinity. In the case where the base 
space is static, lim_A (J' can be identified as a projected sca­
lar twist at infinity. This identification helps in understand­
ing the coordinate dependence of (J '. Adding rotation to a 
static space could, for example, reduce the symmetry from 
spherical to axial. A coordinate dependent (J , accomplishes 
this. 
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III. APPLICATIONS 

A. Schwarzschild metric 

We will take the base space to be the Schwarzschild 
metric in prolate spheroidal coordinates. The convenience of 
this choice has been stressed by Vorhees. 12 In these coordi­
nates S = x, with x = rim - 1, r is the usual polar radius 
and y = cos e. In their usual form, the coordinates are nor­
malized to unit distance between foci. This is acceptable for 
one space, say the base space, but is an overly restrictive 
assumption to impose throughout the transformation. In 
general we have 

D ,2A = 1 (~(X2 _ d 2 ) aA + ~ (1 _ y2) aA), 
(x2 - d 2y2) ax ax ay ay 

D 'A.D'B = 1 ((X2 _ d2) aA aB 
(x2 _ d 2y2) ax ax 

+ (1 _ y2) aA aB). 
ay ay 

Substituting into Eq. (9), one finds a solution for (J, 
1m (J = 0, Re (J = cy = C cos e, with c2 + d 2 = 1. 

( 12) 

This solution generates the Kerr metric with c = - al 

B. s = S(x), (J = (J( y), (Jreal 

Again using prolate spheroidal coordinates we assume 
S is a general function of x, and(J a real general function ofy. 
We will investigate what kinds of base spaces satisfying this 
will generate new solutions S '(x, y). 

Using Eq. (12) we see the last terms ofEq. (9) vanishes. 
Equation (9) becomes 

D'2S(X)!S(X) = -D,2(J(y)!(J(y)=const=c l , (13) 

which is Legendre's equation. S (x) and (J (y) will both then 
satisfy a Legendre's equation in their own coordinate with 
C 1 =L(L + 1). We have 

(JL(y) = aLPL(y) + bLQL(y), 
(14) 

SL(X) =/LPL(X) +gLQL(X). 

We can then say that for any space whose S are either 
polynomial or logarithmic in x, we can generate new solu­
tions. The Schwarzschild solution of part A is obviously a 
special case of this with L = 1 and imposed asymptotic flat­
ness and regularity!3 

C. Slow rotation 

The identification of real (J with an angular speed allows 
Eq. (9) to be written in a slow rotation approximation, to first 
order in (J, assuming (J real. We obtain 

(15) 

The first equation merely says that in the slow rotation 
limit, S will continue to satisfy an Ernst equation in the new 
metric. The second equation determines (J. 

For example, using the solutions formed from S = S (x), 
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and general {3 (x, Y) = {3x(x) {3y(Y), we have two separated 
equations from Eq. (15). One gives 

{3y(Y) = L aLPL(y) + bLQL(Y)' (16) 
L 

and the other is 

When these equations are applied to the general Weyl solu­
tions, S = ((x + 1)° + (x - l)O)/((x + 1)° - (x - 1)0), the 
slow rotation solution of Tomimatsu-Sato l4 is reproduced. 

In conclusion we have presented a one-fixed-point 
method of generating solutions to the field equations. We 
have shown that the method is especially adapted to base 
spaces where S (x) is polynomial or logarithmic in the dis­
tance coordinate. An equation determining new solutions in 
the slow rotation limit for generals = S (x) is derived. 

The one-fixed-point method is significant not only be­
cause it generates new solutions but also because of the in-
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sights it provides about the importance of asymptotic behav­
ior. The matching point of the base and new space-times is 
conformal infinity. At conformal infinity the transformation 
is a simple translation of the angular speed. 
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Necessary and sufficient conditions are derived for a solution of Einstein's vacuum equations to 
depend on an arbitrary function of some scalar function ¢. Unlike the case of the scalar wave 
equation the constant surfaces of the function ¢ need not be null. This apparent anomaly is 
discussed. 
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1. INTRODUCTION 

While many exact solutions of Einstein's equations 
have been discovered by now, these generally depend on a 
finite, or at best countably infinite, number of parameters. 
The only exception known to the author are the plane-front­
ed waves, I which can depend on an arbitrary function of a 
null coordinate u. Yet it is a feature of hyperbolic differential 
equations that they often have classes of solutions with arbi­
trary functions in them. It is the purpose of this paper to 
investigate this situation in general relativity. We shall find 
necessary and sufficient conditions for a one-parameter fam­
ily ofmetrics to be generalizable, by which we mean that the 
metrics are still solutions of Einstein's equations after the 
parameter is replaced by an arbitrary function of some given 
function ¢. 

Section 2 sets the scene. The scalar wave equation in 
Minkowski space is discussed in detail, conditions being de­
rived for a solution of the form F(xj(¢ I), wherefis an arbi­
trary function of a given function ¢: a similar treatment of 
Maxwell's equations is outlined. Two main features are 
worth noticing in these cases. Firstly ¢ must satisfy the null 
condition 

¢.p¢.vg
pV 

= 0, 

i.e., the surfaces ¢ = const are null hypersurfaces. Secondly, 
no solutions of the form 

F = F(xj(¢,¢)) 

depending in an arbitrary way on two functions ¢, ¢ can 
exist. 

In Sec. 3 we consider a one-parameter family of metrics 
gpv (x,A ). The Riemann tensor is computed for itsgeneraliza­
tion, which consists of replacing Il by an arbitrary function 
f(¢ ). Conditions are then derived for the one-parameter fam­
ily to be Riemann generalizable, i.e., in order that the result­
ing Riemann tensor should be obtained from the original 
one-parameter family of Riemann tensors by simply the 
same replacement of Il by f(¢ ). 

Section 4 is the key section. Here the same procedure is 
applied to the Ricci tensor, and somewhat surprisingly it is 
found that the conditions for Ricci generalizability are iden­
tical with those for Riemann generalizability, at least in the 
case of Riemannian or Lorentzian metrics. We now have all 
the conditions necessary for a one-parameter family ofvacu­
urn metrics to be generalizable. 

In Sec. 5 we discuss one-parameter families of vacuum 
metrics which arise by simply applying a one-parameter 

family of coordinate transformations to a given metric. The 
example of plane waves shows that this seemingly trivial 
procedure may lead to nonequivalent generalizations. 

Section 6 discusses a particular specialization of the 
conditions derived in Sec. 4, in complete detail. All exact 
solutions are found which fall into this subcase, but unfor­
tunately all turn out to depend on the arbitrary function in a 
trivial way whenever ¢.p is non-null. 

Finally in Sec. 7 we discuss in greater detail the unex­
pected conclusion that the generalizing function ¢ is not nec­
essarily a null coordinate in the case of general relativity. At 
first sight this seems to be at variance with what is known of 
the characteristic surfaces of Einstein's equations. It is 
shown that while in the case of the scalar wave equation or 
Maxwell's equations the constant surfaces of the generaliz­
ing function ¢ must be characteristic surfaces, this conclu­
sion does not follow in the case of Einstein's equations. The 
way is therefore open for ¢ to be spacelike or timelike. How­
ever nontrivial examples will have to be more complicated 
than any analyzed in this paper. 

2. GENERALIZABLE SOLUTIONS OF THE WAVE 
EQUATION AND MAXWELL'S EQUATIONS 

Suppose we search for solutions of the wave equation 

o ¢_I/!.~ = 0 (1) 

of the form 

¢ = F(xj(¢ I), (2) 

wheref(¢ ) is an arbitrary function (subject to suitable differ­
entiability conditions) of some scalar function ¢ on Min­
kowski space (the argument x is shorthand for the four argu­
ments xo, Xl, x 2, x 3 ). 

On settingf = Il = const we see that 

¢ = F(x,ll ) (3) 

is a one-parameter family of solutions of the wave equation 

DF=O. 

We shall say that such a one-parameter family of solu­
tions (3) is generalizable by a (nonconstant) function ¢ if 
¢ = F(xj(¢ )) is also a solution of the wave equation for arbi­
trary functions f 

What conditions must F (x,ll ) satisfy in order for it to be 
generalizable by ¢ ? From (2) we clearly have 

aF 
¢.p = F.p(xj(¢)) + all (xj(¢ )If'(¢ )¢/l , 
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where 

/'(tP) = :~ , tPl' = tP.1' . 

A more compact way of writing this equation is 

¢I' = FI' + K/,(tP )tPl' ' 

where 

F = aF(x,A) , 
I' ax I' 

a K(x,A) = -F(x,A), 
aA 

(4) 

(5) 

and placing a bar over a function involving the parameter A 
means that all occurrences of A are replaced by an arbitrary 
functionf(tP ). 

Differentiating again and substituting in (1) gives 

0= OF + /'(tP )(2Kl'tP I' + KOtP) + /' 2(tP) ~~ tPl'tP I' 

+ /"(tP )KtPl'tP I' . (6) 
Sincef(tP )istobearbitraryitisclearthatinorderforF(x,A )to 
be generalizable by tP the coefficients of/,(tP ),/,2(tP )'/"(tP ) 
must vanish separately. This results in the following condi­
tions: 

F;:=O, 

tPl' tP 1'=0, 

2KI'tP I' + KtP :: = o. 

(7) 
(8) 

(9) 

Equation (7) is of course merely a restatement of the fact 
that F is a one-parameter family of solutions of the wave 
equation. Equation (8) says that the tP = const surfaces are 
null hypersurfaces, i.e., characteristic surfaces. This feature 
is not surprising in view of the fact that discontinuities of 
solutions of the wave equation (e.g., choosingf" discontin­
uous) can only occur across such characteristic surfaces. 
Equation (9) is a first-order linear partial differential equa­
tion for K, which can be solved for any given tP. Note that it 
has been possible to remove bars from the equations arising 
out ofEq. (6), since for anyone-parameter set of equations it 
is evidently true that 

H(x,A) = O~li=H(xJ(tP)) = o. 
Some typical examples of generalizable solutions are 
(i) F = F(y,z,A ) anyone-parameter solution of the two-

dimensional Laplace equation 

Fyy +Fzz =0 

is generalizable by the functions tP = t ± x. 
(ii) F = Ar- I

, where r = (x2 + y2 + Z2)1/2 is generaliza­
ble by functions 

tP = t± r. 
(iii) F = u(x,y,z)A, tP = t - v(x,y,z). This general case 

has been solved by Friedlander.2 

Ifwe had posed the above problem with/an arbitrary 
function of two independent variables tP,tf we would have 
obtained from the coefficients of/",,,, ' /"''''' andf",,,, , respec­
tively 

tPl'tP ,., = tf,., tf'" = tP,., tf'" = o. 
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Since no two linearly independent null vectors may be or­
thogonal to each other in a Lorentzian metric, this condition 
is impossible to fulfill. Thus no solution of the wave equation 
may contain a general function of two variables. In non­
Lorentzian metrics this is not true, since 

tftt + tfww - tfxx - tfyy = 0 

has solutions 

tf =f(t ± X,w ±y), / arbitrary. 

A similar treatment for Maxwell's equations 

F,.,v,p + Fvp,,., + Fp,."y = 0, 

F,.,v'v = 0, 

yields that a one-parameter family of solutions F,.,v(x,A ) is 
generalizable by a function tP if 

aF,.,y 
K =--=-K ,.,1' aA VfL 

satisfies 

K,.,v tPp + KyptP,., + Kpp.tPv = 0 

and 

Kp.1'tP 1'=0. 

It follows from these equations again that 

tPptP p = 0 

and also that 

K,.,v = tP[,.,qvl"=!(tP,.,qv - tPyq,.,), 

where q" is a spacelike vector satisfying 

tP,.,q'" = o. 

3. RIEMANN-GENERALIZABLE METRICS 

Let g,.,v = gp.y(x,A ) be a one-parameter family of gen­
eral-relativistic metrics (i.e., four-dimensional with signa­
ture - + + +). Again we adopt the convention that if tP is 
a given function on the space time we set 

g,.,1'(x) = gp.y(xJ(tP )), 

wherefis an arbitrary function [i.e., gp.v actually represents a 
class ofmetrics arising fromg,.,v(x,A) and tP]. 

We set 
1 a 

Kp.y(x,A) = --gp.v(x,A) (10) 
2 aA 

and raise and lower indices by g,.,a' g,.,a: 

K"'v =g,.,aKav ' 

Then 

~ r~1' = P~~;a , (11) 

where 

P~~ = K :o~ + K ;:0; - Kp.vg Pa . (12) 

Now if F = F(x,A ) is any function, then clearly 
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whence 

r :V(g)=~PU(gul"v + guv,1' - gI'Y,p) 

= r:v + P :':tPa /'(tP ). 

Applying (13) again to r ~v,p (g) and using (11) we obtain 
the following expression for the generalized Riemann ten­
sor: 

R :uv(g) = R :Uy(g) + /'(tP)[ P :;'atPu - P~':r.atPv 
+ (P :':tPa );u - (P~~tPa );v] -

+f'2(,I.),I. ,I. [PTa P p{3 _ pTa pp{3 
If' "f'a'f'/3 /LV 'TV P.U TV 

ap :': 8 {3 _ ap :: 8 (3 ] -

+ aA u aA v 

+ f"(tP )tPatP{3 [P :':8{3u - P:: 8{3v] -. (14) 

We call the family of metrics Riemann generalizable by 
the function tP if 

R :uv(g) = R :uv(g), (15) 

i.e., if replacing A by an arbitrary functionf(tP ) implies the 
Riemann tensor components are obtained simply by replac­
ing all occurrences of A by f(<p ). 

Sincefis arbitrary we may set the coefficients off" ,/,2, 
and/, separately to zero, and as in Sec. 2, we may remove all 
bars in these equations. Using Eq. (12) the coefficient of 
f"(<p) results in 

<p[I'Kpllv<Pu] = 0, (16) 

which holds if and only if there exists a vector field !,by(x,A) 
such that 

( 17) 

The last two terms in the coefficient of/,2 are just a / aA 
applied to the coefficient off" , hence they vanish as a conse­
quence ofEq. (16). On the other hand, from Eq. (17) we 
obtain 

(18) 

whence the first two terms of the coefficient of/,2 also van­
ish. Hence no further information arises by setting the coeffi­
cient of/,2 to zero. 

Turning now to the coefficient of/,(<p ), when Eqs. (17) 
and (18) are substituted in this equation we obtain 

tPl'L p[v<Pu] =LI'[v<Pu[<p P, 

where 

Ll'l' = !,bl';v + !,bv;1' =£",gl'v . 

That is, Ll'v satisfied the same equation as Kl'v, whence 

Ll'v = <Pl'av + all<PV 

for some vector field 

al' = al' (x,A ). 

4. RICCI-GENERALIZABLE METRICS 

( 19) 

(20) 

(21) 

Contracting Eq. (14) over p and 0' we obtain conditions 
for a one-parameter family of metrics gl'v (x,A ) to be Ricci 
generalizable by a function <p, i.e., for 

(22) 
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In this case the coefficient off"(<p ) gives rise to the equation 

<p{3K {31'<Pv + <p{3K (3v<P1' - Kl'v<Pa<P a - K<pI'<Pv = 0, 
(23) 

where 

If tPa <P a # 0, then it follows at once that 

Kill' = <P1'!,bv + !,bl'tP" 

for some!,bl' = !,b1'(x,A). 
If <Pa<P a = 0 however, we can only conclude from 

Eq.(23) that <PI' is a (null) eigenvector of Kl'v' 

<PpKPI' =!K<p,.,. 

(24) 

(25) 

Again the last two terms of the coefficient of/,2 vanish 
on taking a faA ofthef" equation, while the first two terms 
give rise to the equation 

<PatP{3(P:~P f! - P:~P ft) = O. 

In the case <Pa<P a #0, substitution of (24) immediately guar­
antees that this equation is fulfilled, but in the case <P a <P a = 0 
one obtains from (25) the condition 

(!K 2 
- Ka{3K a(3)<pI'<Pv = O. (26) 

If we assume the metric is Lorentzian (signature n - 2, 
where n = dimension of space) then (24) again follows from 
(25) and (26). To see this, let O'v be a second null vector nor­
malized such that 

and let e i(i = 2, ... ,n - 1) be an orthonormal basis of the 
tangent subspace orthogonal to <Pv and O'v, i.e., 

O'l'ei = <Pl'ei = 0, eil'e( = 8ij' 

It is clear that tPl" PI',ei form a basis of the tangent space and 
KI'I' may be expanded in this basis 

Kl'v = KootPl' <Pv + KoMI' O'v + ul'<Pvl + KilO'I' U v 

+ IKoi(<pl'eiV + eil'<Pv) + KIi(ul'eil. + eil'O'v) 
i 

+ I Kijeil'ejv' 
iJ 

Equation (25) then gives 

KII =Kli =0, I Kii =0, 

while (26) implies 

I Kt =0. 
iJ 

Hence Kij = 0 for all ij and Eq. (24) holds with 

I 
!,bll = - Koo<p1' + Kolul' + I KOieil" 

2 i 

It is easy to convince oneself that if the signature were 
other than Lorentzian (or Riemannian) the conclusion (24) 
would not in general be justified. In general relativity (n = 4, 
Lorentzian) we may however adopt Eq. (24) as being equiva­
lent to thef" and/,2 equations. 

There remains the equation arising from setting the co­
efficient of/,(<p ) equal to zero, 

P :':a <Pp - P :;a <Pv + (P :':<Pa );p - (P :;<Pa Lv = o. 
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On substituting Eqs. (12) and (24) we obtain 

<Pp <P PLp.v - <PvLp.p<P P - <pp.Lvp<P P + L t<Pp.<Pv = 0, 

where Lp.v is given by Eq. (20). That is, Lp.v satisfies the same 
equation as Kp.v [Eq. (23)] and again we may conclude that 
L has the form given in (21). In summary then 

p.v Theorem 1: A one-parameter family of Riemannian or 
Lorentzian metrics gp.v (x,A ) is Ricci generalizable by a func­
tion <P if and only if there exist vector fields tPp. (x,A ) and 
Pp. (x,A ) such that 

1 J 
Kp.v 2 JA gp.v = <pp.tPv + tPp.<pv (27) 

and 
Lp.v=tPp.;v + tPv,p. = <Pp.Pv + Pp.<Pv· (28) 

Since these conditions are exactly the same as those ob­
tained in Sec. 3 we also have the following result: 

Theorem 2: A one-parameter family of Riemannian or 
Lorentzian metricsgp.v(x,A ) is Ricci generalizable by a func­
tion <P if and only if it is Riemann generalizable. 

Perhaps the most surprising aspect of these theorems is 
that <pp. is not necessarily a null vector. We shall return to this 
point later. To conclude this section we just wish to remark 
that as in the case of the scalar wave equation, no metrics are 
Ricci generalizable by arbitrary functions of two indepen­
dent variables/(<p,tP) (with <Pp.' tPp. linearly independent vec­
tor fields). 

This follows by setting up the equations (22) and setting 
to zero all coefficients of/", , /"" etc. The coefficients of 
/",,,,,f,,,,,,, /",,,, yield, respectively 

<pp.av + aJL<Pv - K<pp.<pv = KJLv<Pu<P u, (29) 

tPJL{3v + {3p. tPv -KtPp.tPv =Kp.vtPu~' (30) 

tPp.av +ap.tPv + <Pp.{3v + (3p.<Pv -K(<pp.tPv +tPp.<Pl') 

= 2Kp.v<Pu tPa
, 

where 

ap' = Kp.p <P P, {3p. = KJLptPp. 

(31) 

By taking suitable linear combinations of <P and tP it is easy to 
see that for Riemannian or Lorentzian metrics there is no 
loss of generality in assuming that 

<PU<PU=lO, tPutPu=lO. 

Equations (29) and (30) give at once that ap' and{3p. must be 
linear combinations of <Pp. and tPp. 

ap' = a<pp. + btPp.' (3p. = c<pp. + dtPp. 

and substituting back in (29) and (30) results in 

Kill' =B(<pp.tPv + tPp.<Pv)' 

where 

b = B<pa¢ a, a = d = B<pu tPu, c = BtPa~' 
Finally substituting into (31) results in B = 0, i.e., 

Kill' =0, 

which proves the desired result. 
The most interesting case arises in general relativity 

when RJLl'(g) = 0 leads to Rill' (g) = 0; we call this situation 
vacuum generalizable. Theorems 1 and 2 clearly apply to this 
case. 
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5. COORDINATE TRANSFORMATIONS 

A particularly simple way of generating a one-param­
eter family of vacuum metrics is to apply a one-parameter 
family of coordinate transformations 

yll = yp.(x,A), 

with inverse 

XIl=XP.(y,A) 

to a given parametrized vacuum metric gill' (x,A,Il, ... Mill' 
may of course depend on no parameters at all). This new 
family 

Jxu Jx p 
glll'(y,A,Il, ... ) = gup(x(y,A ),A,Il, ... j - (y,A ) -a v (y,A ) 

JyJL ~ 
(32) 

is of course geometrically equivalent to the original family 
gill" but ifit is vacuum generalizable there is no g~arantee 
that its generalizations by a function <P are so eqUlvalent. 

Unfortunately Theorem 2 implies that the simplest pos­
sible procedure, namely, to apply a one-parameter coordi­
nate transformation to flat (Minkowski) space does not lead 
to anything new. For in this case the Riemann tensor vanish­
es for the entire family, and hence all its generalizations also 
have vanishing Riemann tensor and are therefore flat. How­
ever, for curved vacuum metrics the procedure may result in 
new metrics. 

Differentiating (32) with respect tOA gives the transfor­
mation of Kill' 

o Jxa Jx p 
Kllv(y,A) = KaP(x(y,A ),A) Jyp. JyV + SI/L;V) , (33) 

where 

Jy P Jxa Jy {3 
--- = ---, 

JA JA Jxu 

and ";" refers to covariant derivative with respect to gp.v (all 
other parameters Il, ... have been suppressed). A similar 
analysis for any tensor T~;::: (x,A ) yields the general result 

~ Tp.l' '(y,A) = (~Tu~) Jyp. ... Jx
Y 

••• + L-Tuf', 
JA pa. . JA Y ... Jxu Jy P • Y 

where 

Tp.v '(y,A) = TU{3(x(y,A),A) Jyp. ••• Jx
Y 

••• 
pa . y8... Jxu JyP 

Examples 
(1) Supposegp.l'(y,A) is a one-parameter family ofvacu­

urn metrics, generalizable by a function <p, i.e., suppose 
Eqs.(27) and (28) hold. Ifpp. = 0, then 

tPp.;l' + tPv;p. = 0, 

i.e., tPp. is a Killing vector and from (27) we have 

Kp.v = SI/L;l') , 

where 

Sp. = 2<PtPp.· 

Hence gp.l'(y,A ) is obtained by applying a coordinate trans­
formation to gp.v(x) = gp.v(x,O), given by 

Jyp. = _ S p. = - 2<p (Y)tPP.(y,A) 
JA 
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subject to 

y"(X,O) = X'". 

(2) Plane-fronted waves l
: 

ds" = - 2Hdu2 + 2dudv + dx2 + dy2, 

where 

H=H(u,x,y) 

is subject to 

H,22 + H33 = ° (34) 

(XO = u, X I = v, x 2 = x, x 3 = y), All such metrics satisfy Ein­
stein's vacuum equations. Thus, it is clear that H = H (A.,x,y) 
gives rise to a one-parameter family of metrics which are 
vacuum generalizable by ¢ = u, All conditions of Theorem 1 
are satisfied since 

aH 
K ,,,. = - aA. u,' U,l' , 

whence Eq, (27) holds with 

1 aH 
I/Ifl = - 2 aA. U'fl 

and (28) follows with 

a2H 
P" = - aX"aA. ' 

Theorem 2 is easily verified by computing the Riemann ten­
sor, whose only surviving components are 

R OAOB = H,AB(A,B = 2,3), 

Clearly A. is replaced by f(u) in these components, hence these 
solutions are all Riemann generalizable, Flat space occurs if 
H is linear in x and y, Plane waves arise if H is quadratic in x 
and y, and may be regarded as generalizations by ¢ = u of 
the two-parameter metric having 

H = A. dx" - y2) - 2A. 2xy, 

If we set A.I = cos 2A., A.2 = sin 2A., then 

where S" = (0,0, - y,x), In this case the one-parameter fam­
ily is obtained from 

dS 2 = - 2(X2 - y2)du2 + 2 du dv + dX 2 + dy2 

by performing the one-parameter family of coordinate trans­
formations 

x = X cos A. + y sin A. 

y = - X sin A. + Y cos A., 

However the generalizations obtained by setting A. = f( u) are 
not in general equivalent to gil'" since the generalizations are 
plane waves with variable phase and amplitude whilegflv has 
constant phase and amplitude, So here is an example where 
the original one-parameter family of metrics are all equiva­
lent but their generalizations result in genuinely inequivalent 
metrics, 

6. A SPECIAL CASE 

It turns out that if we set t/J fl proportional to ¢,", the 
generalizable metrics can all be written down explicitly. The 
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analysis is rather long and we will only outline the main steps 
here. 

If ¢fl is a null vector field, then Eq. (28) immediately 
shows that it is shear-free and twist-free. All such metrics 
have been discovered by Kunde and need not be discussed 
further here. 

If ¢fl is non-null, let us postulate it to be timelike (the 
spacelike case is similarly analyzed) and set XO = ¢. From 
Eq. (27) it is easily shown that coordinates xi(i = 1,2,3) may 
be found such that 

ds2 = - N "(x,A. )(dXO)2 + gij (X)dXi dx j' 

Since W" = f(x,A. )¢f.l' Eq. (28) shows that 

0= ¢J1iJI = - r~ = - ~N-2gij,O' 

whence gij = gij(XI, x 2, x 3
), Now the spatial part of the Ein­

stein field equations gives 

R~I=N-Wlij' 

where I refers to covariant derivative with respect to the 
three-metric gij' 

Since R ~J', being constructed from the three-metric gij' 
has no A. dependence it can be verified that 

S, =N
2
(N-

1 ~~t 
satisfies 

Slij) = ° 
and is therefore a hypersurface-orthogonal Killing three­
vector. We can therefore cast the metric in a Weyl form 

ds" = - e2u + 21"(dxO)2 + e2fl(dxl)2 + e2v d{; d;, (35) 

where 

(;=x2 +ix3
, ;=x2 -ix-1, 

f.l = f.l({;l), r = r({;l ), a = a(xO, x I,(;,; ). 

The Einstein equations may now be written out in full: 

a l!; + ala; = 0, (36) 

a II + ai + e2fl - 2V(4f.l!;~ + 8f.l!;f.l~ + 2a!;f.l~ + 2a~f.l,) = 0, 
(37) 

a;; + a,a?: + a!;f.l?: + a~f.l!; = 0, (38) 

a" + a~ + 2a;(p; - v;) + 2f.l;; + 2f.l~ - 4v!;f.l, = 0, (39) 

and 

v;; + f.l;; + f.l!;f.l; = 0, 

Now Eq, (36) implies that 

eU = G (XO, Xl) + F(xO,{;l), 

Case (i): a l = GI_a~ ~o, 
ax 

Substitution of(41) into (39) gives 

f.l!;!; + f.l~ - 2v,f.l, = 0, 

(40) 

(41) 

Together with the results of differentiating Eqs. (38) and (39) 
with respect to {; and;, respectively, this results in 

2v;; - f.l;?: - f.ll;f.l~ = 0, 

which is clearly only consistent with Eq. (40) if v;~ = 0. Now 
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at this point a computation of the Riemann tensor compo­
nents would show them all to vanish, so there is no need to 
proceed further with this case as it can only result in flat 
space. 
Case (ii): a I = 0. 

In this case, Eqs. (37) and (38) result in 

(eU + 21")~~ = 0, 

whence 

eU = e - 2I"Lf(xO,~) + f(xo:;)] 

and 

21l~~if + f) + Il~f; + Ilsf-; = 0. (42) 

Let ¢; = /(O,~ ) and set 

K (XO,~,;) = if + f)I(¢; + ~ ). (43) 

We are clearly only interested in the case K #const, else 
there is no XO dependence in the metric at all. Equation (42) is 
clearly equivalent to the pair of equations 

and 

K~Il-; + K-;Ilt; = 0, 

while Eq. (39) implies 

2(¢; + ~ )Ilt; - 2(v; + Ilt; )¢>; + ¢>;; = ° 
and 

(e- 2TK;); =0, 

where 

l' = v + Il - In(¢> + ~ ). 
Hence 

K; = p(XO,; )e2
1', K~ = p(xo,~ )e2

1' 

for some functionp(xO,~). From Eq. (45) one sees that 

(44) 

(45) 

(46) 

(47) 

p = P (xO)b (~ ) for some real function P and complex function 
b (~ ). Defining a complex function Z (~ ) by 

dZ 
-----
d~ b(~) 

we see that Il = Il(X) where we have set Z = x + iy. By 
changing the complex coordinates~'; to Z,Z it is now a 
relatively straightforward matter to integrate Eqs. (43)-(47). 
Apart from some removable arbitrary constants, there are 
three distinct cases, arising from 

Ip,)-I = x, sin x, or sinh x. 

The first case leads only to flat space whilst the second re­
sults in the metric 

ds2 = (I + cos X)2! - [A (xO)e Y + B (xO)e - Yj2(dXO)2 

+ dx2 + dy2J + (I - cos x) (dx'f 
(I + cos x) 

At first sight it appears that one has here a vacuum metric of 
the desired kind, exhibiting arbitrary functions A, B of a 
timelike coordinate xO. However, further inspection reveals 
that the two-metric 

- [A (xO)e Y + B (xO)e - Y] 2(dxO)2 + dy2 

has constant curvature (curvature scalar = I). As any such 
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two-metric can be brought to a canonical form, it is clear that 
coordinate transformations exist which eliminate the arbi­
trary functions. The resulting space time is then a very spe­
cial Weyl static axisymmetric solution. The case 
Il' = (sinh X)-I is similar. 

7. RELATION TO CHARACTERISTICS AND 
CONCLUSIONS 

The structure of solutions to Einstein's equations in­
volving arbitrary functions has been shown to possess remar­
kably simple properties. Perhaps the most surprising aspect 
of the results in Theorems I and 2 is that the gradient ofthe 
function ¢> need not be a null vector, as is the case for the 
scalar wave equation or Maxwell's equations. This is espe­
cially surprising in view of the fact that characteristic sur­
faces of Einstein's equations (i.e., surface ¢> = const across 
which the curvature tensor has a discontinuity) are known to 
be null surfaces.4

•
5 Since such discontinuities can apparently 

be generated by setting the arbitrary function/ to be discon­
tinuous, it seems at first sight paradoxical that this conclu­
sion does not follow. A detailed look at Pirani's treatment of 
characteristics reveals the reason for this apparent discrep­
ancy. 

In the case of the scalar wave equation, a discontinuity 
in/"(¢> ) gives rise, via Eq. (6), to the usual characteristic 
condition (8). Similarly in Maxwell's equations a discontin­
uity inf'(¢> ) gives rise to the characteristic conditions 

LJFl"v = ¢>ll"q"i' ¢>I"¢; I" = 0, ¢;I"ql" = ° 
obtained on replacing Kl"l' by LJFl"l" 

For Einstein's equations it is not strictly allowable to set 
I(¢; )discontinuoussincethis violates the usual C 2 -differentia­
bility conditions. If one sets/"(¢> ) discontinuous, this does 
indeed result in the discontinuity of the Riemann tensor 

LJRI"VPCT = 2¢;II"Kpliv ¢>CTiLJ/"(¢», 

while the condition LJRl"v = ° results in 

0= LJRI"P = (KI"P¢;l'¢> v - ¢;I"Kpv ¢> v - ¢;pKl"v¢; v 

+ K¢>I"¢>p)LJ/"(¢;), 

which implies in turn 

LJRpI"CTV¢>U¢; a = 0. 

At this point it is argued that if LJRPI"CTV #0 (i.e., the 
surface ¢; = const is a characteristic), then ¢;u ¢; U = 0. How­
ever, our discussion has shown that it is precisely the case 
LJRPI"CTV = ° which occurs here since RI"VPCT depends only on 
I(¢> ) and not its derivatives. While it is tempting on this ac­
count to permit/I¢; ) to be discontinuous there appears to be 
no guarantee that this violation of Lichnerowicz conditions 
can be undone by a (discontinuous) coordinate transforma­
tion. It should furthermore be recognized that these contin­
uity conditions are an integral part of the proof of the null­
ness of characteristic surfaces. 

Nevertheless one's feeling that this problem is intimate­
ly connected with characteristics goes deep, and this paper 
only goes a little way to disturbing it. The detailed example 
given in Sec. 6, at first looks most promising in its goal of 
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obtaining a family of solutions depending in an arbitrary way 
on a non-null function, only to dissolve in the final analysis 
through a series of coordinate transformations. Whether the 
same phenomenon would occur in general, without the re­
strictive ansatz t/J" a:,p", is impossible to say at this point. In 
conclusion, it is perhaps worth pointing out the existence6 of 
a family of solutions of the Einstein dust equations, 
G"" = pu" U,,' which have in them arbitrary functions of a 
spacelike coordinate. It is not inconceivable that interior so­
lutions like this, which permit a certain amount of arbitrary 
variation of the matter distribution, could not lead to exteri­
or solutions similarly dependent on an arbitrary function. 
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The exterior Cauchy problem is discussed for the fourth-order theories of gravity derived from the 

Lagrangian densities .2" = ,[=g (R + !aR 2 + bRf/N R /LV) - K.2" m' When b # 0, the Cauchy 
problem can be solved by the standard method already used in general relativity. When b = 0, the 
problem cannot be formulated as in the case where b #0, since the corresponding fourth-order 
theory is shown to be equivalent to a second-order scalar-tensor theory. This scalar-tensor theory 
is proved to coincide with one of the models of gravity proposed by O'Hanlon in order to present a 
covariant version of the massive dilaton theory suggested by Fujii. This result is generalized: The 
models of O'Hanlon are shown to be indistinguishable from the fourth-order theories derived 

from the Lagrangian densities.2" = J - g F (R ) - K.2" m' where F is any real function such that 
F "(R ) does not identically vanish. 

PACS numbers: 04.50. + h 

I. INTRODUCTION 

In recent years, the quantization of the gravitational 
field has given rise to much interest in the fourth-order the­
ories of gravity derived from the Lagrangian densities l

•
2 

(1) 
where R denotes the scalar curvature, R/Lv the Ricci tensor, 
.:£ m the matter Lagrangian, K a coupling constant similar to 
the Einstein constant, and a, b two parameters with dimen­
sion of a squared length. Moreover, the effects on cosmologi­
cal solutions of adding quadratic terms in the curvature ten­
sor to the usual Einstein-Hilbert action have been 
considered by a number of authors. 3 

The purpose of the present work is to study the exterior 
Cauchy problem for the two-parameter family offield equa­
tions derived from (I). Stelle4 has already touched on this 
problem for the linearized equations by using the de Rham 
transverse-traceless decomposition of the metric. Although 
this procedure presents the advantage of exhibiting the var­
ious helicity components of the gravitational potentials, we 
employ in our investigations the classical method developed 
by Lichnerowicz5 and others for general relativity. Indeed 
this method brings very fruitful information about the in­
trinsic structure of the theories examined here, particularly 
in the case where b = 0.6 

Section II is concerned with the exterior Cauchy prob­
lem in the case where b # O. 

The other sections are devoted to the field equations 
obtained when b = O. For these equations, the Cauchy prob­
lem cannot be solved if one formulates it as in Sec. II. To 
remove this difficulty, we are led to construct a second-order 
scalar-tensor model equivalent to the fourth-order equa­
tions (see Sec. III). Using the new system of equations, we 
reformulate and solve the Cauchy problem in Sec. IV. In Sec. 
V the scalar-tensor model constructed in Sec. III is com­
pared with one of the models of gravity proposed by O'Han­
Ion 7 in order to get a covariant formulation of the massive 
dilaton theory suggested by Fujii.8 It is then proved that any 
model of O'Hanlon is equivalent to a theory of gravity in-

volving fourth-order derivative terms. Section VI contains 
our conclusions. 

II. THE EXTERIOR CAUCHY PROBLEM FOR b#O 

In this work, we consider a Lorentzian space-time V4 in 
which the connection is the Christoffel connection formed 
from the metric tensor g/Lv' The variation of the Lagrangian 
density (1) with respect to the g/LVyields the fourth-order field 
equations 1.3.4 

GI-'V =KT/LV (p,v=0,1,2,3), (2) 

where 

G/LV = bR/Lv,A;A + (a + ~b )g/Lv DR 

- (a + b )R;/L;v + aR (R/Lv - !Rg/Lv) 

+ 2b (R/LpvU - W/LvRpu)R pu + R/Lv - !Rg/Lv' (3) 

1 8.:£m 
T -----

/LV ,[=g 8g/LV 

The Ricci tensor R/Lv and the scalar curvature R are defined 
by 

R -RA R - /LVR /LV - !-IAv' - g /LV' 

R a/Lf3v = r~v.f3 - r~f3.v + r~vr~f3 - r~f3r~v' 
We use the signature ( +, -, -, - ) for the metric ten­

sor. The r~v are the Christoffel symbols of the second kind 
formed from the metric g/Lv' The symbol ( ).a denotes the 
ordinary derivative and ( );a the covariant derivative: 0 is 
the d' Alembertian operator acting on a scalar function. 

Contracting the field equations (2), one finds 

(3a + 2b )OR - R = {(T, (4) 

where Tis the trace of the energy-momentum tensor T/Lv' 
The geometrical tensor G/LV satisfies the conservation 

identities 

GI-' v,/L = ° (5) 

so that T/Lv satisfies the conservation law TI-' v,/L = 0 when the 
field equations are verified. 

In our approach, we suppose that the space-time is a 
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differentiable manifold V4 of class C 4 and piecewise of class 
C 6. Moreover, the metric components g/w are assumed to be 
of class C 3 and piecewise continuous of class C s. Our aim is 
to study the Cauchy initial value problem in an empty space­
time. Then, the field equations are 

GI'V = O. (6) 

Let.I be a hypersurface oriented everywhere in space 
and described, at least locally, by X O = O. The Cauchy data 
consist of the values on.I of the metric components gl'v and 
of their partial derivatives gl'v,o, gl'v,oo, and gl'v,ooo' The spa­
celike orientation of.I is equivalent to the condition goo> 0 
on.I. The index of any partial derivative of a potential gl'v is 
defined as the number of times this potential is differentiated 
with respect to X O s. The Cauchy data of index n,;;;; 3 are as­
sumed to be of class C S - n. 

The fourth-order derivatives of the potentials of index 
,;;;;3 can be directly calculated on.I from the Cauchy data by 
differentiation. They are continuous. In order to examine the 
behavior of the derivatives of index 4, let us write the field 
equations (6) so that these derivatives appear explicitly. Ifwe 

* define g'j and A by 

(7) 

* A lj 
=g glj.oooo, (8) 

we get 

Glj= - ~(g00)2[ bglj.oooo + (20 + b )Agij] + Fij(d.C.) = 0, 

(9) 

G«J=~oo[ bg"jgij,OOOO - (20 + b )Agoog«J] + F«J(d.C.) = 0, 
(10) 

Goo= - ~ool bgljglj.oooo + [(20 + b )gOO gOO - 2(a + b )]A l 
+ Foo(d.C.) = 0, (11) 

where Fl'v(d.C.) denote quantities which can be determined 
on.I from the Cauchy data by algebraic calculations and by 
differentiations. 

There is no derivative gl'o.oooo in the above equations. 
This fact is not surprising, since there exist coordinate trans­
formations of class C 4 and piecewise continuous of class C 6 

which alter neither the Cauchy data nor the derivatives 
glj.oooo, but reduce thegl'o.oooo to any specified values (see 
Appendix A). This implies in particular that the discontinui­
ties in the derivatives gl'o.oooo have no physical meaning and 
do not play an essential role in the problem. 

Given the quantities G lj and Goa, it is possible to deter­
mine the G ~ . Conversely, if gOO # 0, one can derive the quan­
tities Goa from Glj and G~ by using the relations 

gOOG«J = G~ - ~jGlj' 

(g00)2Goo = gooGg _ gOiG~ + g0ig0jGlj' 

It follows from these relations that if gOO # 0, the system of 
Eqs. (9) and (10)-( 11) is equivalent to the system formed by 
Eqs. (9) and by the four equations 

G~ =0. (12) 
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Let us suppose Eqs. (9) to be satisfied. We can prove as 
follows that Eqs. (12) remain valid in a neighborhood of.I 
once they are satisfied on .I. 

Identities (5) may be written as 

G~.o +r~AG~ -r~aG~ +G~.i 
+r:;'G~ -r;;'G~ =0. (13) 

When Eqs. (9) are satisfied, the quantities G \ are con­
nected with the G~ by the relations 

gooG; = g«JG J, 
* gooG~ = gdlGg + gikG~. (14) 

Since we have assumed gOO continuous in a neighbor­
hood of.I and > 0 on.I, we have goo> 0 in a neighborhood of 
.I. Hence relations (14) determine G; and G ~ from G~. Then 
identities (13) become four linear and homogeneous partial 
differential equations of first order in G ~ : 

G~.o =A iAaGt +B!G~, (15) 

where the coefficients A a a and B ~ are continuous. For the 
initial conditions G ~II = 0, the only solution of Eqs. (15) is 
G~ = O. Thus it is proved that the field equations (6) are in 
involution in the sense of Cartan. 

A straightforward calculation shows that the quantities 
G~ contain no derivative of index 4. The conditions 

G~II = 0 (16) 

must be therefore imposed to the Cauchy data: They consti­
tute a set of four initial constraint equations. 

Hence the initial exterior Cauchy problem is split into 
two distinct parts: 

(1) the problem of finding Cauchy data which satisfy the 
constraint equations (16) on .I; 

(2) the problem of integrating the dynamical equations 
(9) for these Cauchy data. 

Let us now assume the constraint equations (16) to be 
fulfilled by the Cauchy data (problem 1) and let us try to 
solve problem 2. Using the relations 

(17) 

* and contracting Eqs. (9) by g'i, we get 

A. Case 3a + 2b",O 

lf3a + 2b #0, Eq. (18) determines A on.I from the 
Cauchy data. Inserting the expression obtained for A in Eqs. 
(9), we can determine the fourth-order derivatives gij.oooo on 
.I from the Cauchy data, since we assume b #Oandgoo

lI >0. 
Thus it is proved that the glj.oooo are continuous across .I. 

If we restrict the solution to the class of analytic func­
tions, the Cauchy-Kowaleska theorem shows that the sec­
ond problem admits a real analytic solution which is unique 
to within a transformation of coordinates leaving unaltered 
the coordinates of any point on.I and the Cauchy data on.I. 
It should be noted that the gl'v can be analytic in empty 
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regions of the space-time free from gravitational shock 
waves, but that discontinuities would appear in the fourth­
order derivatives of the gJ.lV across hypersurfaces separating 
the matter from the vacuum. However, more work is needed 
on this question, and we shall not go far away in this direc­
tion. 

B. Case 3a + 2b = 0 

If 3a + 2b = 0, A is not determined by (18) since this 
equation is reduced to 

* * g'iGij=g'iFij(d.C.) = O. (19) 

This relation constitutes a new constraint on the 
Cauchy data, which is different from the four constraints 
( 16). This fact is easy to understand. If 3a + 2b = 0, the trace 
equation (4) implies in the vacuum 

R =0. (20) 

Hence, the values of R on ~ being completely determined by 
the Cauchy data, we must impose the additional constraint 

RII = O. (21) 

But in the case of 3a + 2b = 0, (21) is equivalent to (19) pro­
vided that Eqs. (16) are satisfied. Indeed, the following iden­
tity is valid for any symmetric tensor G,ll" 

* gijG = G - gOaG ° /gOO G = g,,(3G 
IJ a' a/3' (22) 

and G = - R for the tensor (3) when 3a + 2b = O. 
Moreover, (20) implies R,o = 0 and R,o is determined 

by the Cauchy data on~. Hence the Cauchy data must also 
satisfy the supplementary constraint 

R.oII = o. 
We demonstrate in Appendix B that the exterior 

Cauchy problem can be split into the following parts: 

(23) 

1. The problem of finding Cauchy data which satisfy the 
constraint equations (16), (21), and (23) on~. 

2. The problem of integrating the dynamical equations 

Gij=O, 
where 

Gij =Gij + j(gOaG~/goo)gij +!b DRgij 

- - !b (gOO)2gij.oooo + Fij(d.C.), 

(24) 

(25) 

the Fij (d.C.) being quantities which can be calculated on ~ 
from the Cauchy data. 

Since we assume b (gOO)2#0 on~, Eqs. (24) yield the 
gij,OOOO on ~ from the Cauchy data. As in the case of 
3a + 2b #0, these derivatives are continuous across~. 

This study shows that there is no possibility of deter­
mining the gij.oooo if gllOlI = 0; ~ is then a characteristic hy­
persurface. Thus we see that any characteristic hypersurface 
in the vacuum is described by a local equation of the form 

f(xa
) =0, 

wherefis a solution of the equation 

~(3!J.(3 = 0. 

Therefore, the characteristic hypersurfaces are null hyper­
surfaces, exactly as in general relativity. 
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III. FIELD EQUATIONS WHEN b = 0 

When b = 0, the Cauchy problem cannot be solved if 
one formulates it as in Sec. II since thegij.oooo are not present 
in the field equations (9). However, we shall demonstrate in 
this section that the fourth-order theory may be replaced by 
an equivalent second-order scalar-tensor theory. In this new 
version, the Cauchy problem is formulated differently and 
can be solved properly. 

In the case where b = 0, the field equations (2) are 

GJ.lV -(1 + aR )SJ.lV + ~aR 2gJ.lY + agJ.lv DR - aR;J.l;v = KTJ.lv' 
(26) 

where SJ.lv = RJ.lv - !RgJ.lv· 
Now let us consider the set (g,Q) constituted by a metric 

tensor g and a scalar field Q. We associate to (g,Q ) the scalar 
field K and the symmetric tensor LJ.lv defined by 

K = aDQ - jQ, (27) 

LI", = (1 + aQ )SI'Y + (jQ + !aQ 2)gJ.ll' - aQ;Il;l' + KgJ.lv' (28) 

The tensor L
I
", and the scalar K verify the identities 

L - 3K = (1 + aQ)(Q - R), L = g,,(3L a(3' (29) 

V'l';11 = !a(Q - R )Qv' (30) 

It is easy to show that if we except a very particular case, 
the fourth-order equations (26) can be replaced by the fol­
lowing set of second-order equations relating g and Q to the 
source of the gravitational field, 

LJ.lV =KTJ.lv' 

K=jKT. 

(31) 

(32) 

Let us suppose that a metric g satisfies the field equa­
tions (26). Then, we can associate to it a set (g,Q ) solution of 
Eqs. (31)-(32), where Q is given by 

Q=R. (33) 

If (33) holds, we have indeed 

LJ.lV = GJ.lv' 

and Eq. (32) becomes the equation obtained by contracting 
(26). 

Conversely, let (g,Q) be a solution of Eqs. (31)-(32). In 
order to demonstrate thatg is a solution of(26), it is sufficient 
to show that (33) is valid. 

Taking into account identity (29), Eqs. (31 )-(32) imply 
that at any point of V4 

(1 + aQ)(Q - R ) = 0. (34) 

Differentiating this equation we get 

(1 + aQ)(Q - R );1' + a(Q - R )Q;J.l = 0. (35) 

Let us suppose now that there exists a point pE V4 such 
that Q #R. Then it follows from (34) and (35) that at this 
point 

1 + aQ = 0, Q;J.l = O. (36) 

Differentiating (35) and taking (36) into account, we get at p 

Q;J.l;V =0. 

Therefore, at the point p, DQ = 0, and Eqs. (31 )-(32) are 
reduced to 
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(37) 

Since the cosmological constant is taken here to be zero, 
such an expression of Tl'v is excluded in a vacuum (Tl'v = 0) 
or in a pure electromagnetic field (T = 0). The same conclu­
sion is true for a matter fluid described by 

Tl'l' = (p + p)f..ll'f..lv - pgl'v + 71''' 

with the usual condition 71'vf..l1' = 0, f..ll' being the unit 4-ve­
locity of the fluid andp the matter-energy rest density. Mul­
tiplying Tl'v by f..ll'f..lv and comparing with (37), we find 

Kp = 1!4a. (38) 

But it results from (27) and (32) that a must be assumed 
< 0 in order to avoid a tachyonic propagation for the scalar 
field Q. On the other hand, the coupling constant K must be 
> 0 in order to ensure an attractive predominant force of 
gravity. Hence (38) contradicts the natural conditionp > 0, 
which proves that (37) is not possible for a realistic fluid 
when there is no tachyonic field. 

Finally, we can conclude that if the no-tachyon condi­
tion a < 0 is realized, then Eq. (33) is valid everywhere for any 
usual energy-momentum tensor, and particularly for Tl'v 
= O. The same conclusion could be drawn with a cosmologi­

cal constantA #(4a)-I. 
It should be noted that ifEqs. (31 )-(32) are satisfied, the 

energy-momentum tensor Tl'v is divergence-free. Taking 
into account identity (30) and Eq. (35), the field equations 
(31) imply 

KTI'V;I' = !a(Q - R )Q;v 

= -!(l + aQ )(Q - R Lv' 

Now applying (34) we get immediately Tl'l';1' = O. 

IV. THE EXTERIOR CAUCHY PROBLEM FOR b = 0 

We turn now to study the exterior Cauchy problem for 
the system of second-order equations (31 )-(32). Given a 
spacelike hypersurface2: (Xo = 0), the Cauchy data consist of 
the values on 2: of gl'v' gl'v,o, Q, and Q.o' The differential 
properties of the space-time and of the metric g are supposed 
to be the same as in Sec. II. 

We assume gOO continuous and goolI > O. Hence gOO is 
> 0 in a neighborhood of 2:. By a method similar to that 
which has been already employed in Sec. II, one can easily 
see that in this neighborhood of 2:, Eqs. (31 )-(32) are equiva­
lent to the set of equations 

Lij= - !goo(1 + aQ )(gij,oo - Bgij) + Kgij + Hij(d.C) = 0, 
(39) 

L~_H~(d.C.)=O, 

K _agooQ,oo + E(d.C.) = 0, 

where 

(40) 

(41) 

(42) 

andHij(d.C), H~ (d.C), andE (d.C) denote quantities which 
can be computed on 2: from the Cauchy data. 

There are no derivatives gl'o,oo in the above equations. 
As in general relativity, these derivatives do not play an es­
sential role in the problem since they can be reduced to any 
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specified values on 2: (provided that they are continuous 
across 2: ) by an admissible local coordinate transformation 
of the form 

xA' = ~ + i(XO)3ip (A I(Xi), 

where ip (A I(Xi) are functions of class C 4 and piecewise contin­
uous of class C 6. (It is easy to verify that neither the Cauchy 
data nor the derivatives gij,oo are modified by such a coordi­
nate transformation.) The indetermination of the gl'o,oo can 
be supplied by imposing four coordinate conditions consis­
tent with the Cauchy data. 

The quantities L ~ contain no derivatives of index 2. 
Therefore, the initial conditions 

L~II = 0 (43) 

constitute a set of four constraint equations which the 
Cauchy data have to verify. 

Let us prove now that Eqs. (39)-(41) are sufficient to 
maintain the validity of Eqs. (40) in the neighborhood of 2:, 
once the constraint equations (43) are satisfied. First, the 
quantities L ~ are connected with the L ~ by relations similar 
to (14), where the G p have to be replaced by L p. As a conse­
quence, identities (30) yield the equations 

L ~,o = CiA aL ~,i + D~L ~ + !aUQ,a' 

where U is defined by 

U=Q-R 

(44) 

and C;,\ a and D ~ denote continuous quantities built from 
ga{3 and ga{3,r' Secondly, differentiating identity (29) with re­
spect to XO we get 

L,o = (1 + aQ)U,o + aUQ,o' 

But Eqs, (39) imply 

L = goaL ~/goo. 

Thus, Eq. (45) may be written as 

(45) 

(1 + aQ JU.o + aUQ,o = (gOa/goo)L ~,o + (gOa/gool,oL~. (46) 

At this stage, let us assume that 1 + aQ is continuous 
and 

(47) 

Consequently, 1 + aQ #0 in a neighborhood of 2:. Hence 
L ~ and U satisfy five linear and homogeneous partial differ­
ential equations of first order, namely Eqs. (44)-(46), which 
are resoluble in L ~,o and U,o' For the initial conditions L ~II 
= 0 and U1I = 0 [this last condition being a direct conse­

quence of identity (29) and of the field equations on 2:], the 
only solution of Eqs. (44)-(46) is 

L~ =0, U=O. 

Therefore, Eqs. (40) are maintained once they are satisfied on 
2:, provided that (47) is realized. Moreover, we recover 
Q = R in the particular case of a vacuum. 

The assumption (47) is essential. Indeed, if we suppose 
1 + aQ = 0 at a point of2:, the coefficient ofthegij,oo vanish­
es in Eqs. (39): In this case, the evolution of the metric is not 
determined by the initial conditions. 

We conclude from these results that the initial exterior 
Cauchy problem must be split into the following parts: 
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1. The problem of finding Cauchy data on ~ which sa­
tisfy the constraint equations (43) and the condition (47). 

2. The problem of integrating the dynamical equations 
(39)-(41). 

If the problem 1 is solved, Eq. (41) enables us to calcu­
late Q.oo on ~ from the Cauchy data, since gOOI.2" is assumed 
#0. Then inserting the value of Q.oo in Eqs. (39) and con-

* tracting by fl, we get 

* * gijLij g00(1 + aQ)B + g.iJHij(d.C.) = o. 

This equation determines B on ~ from the Cauchy data. 
Hence the derivatives gij,OO can be determined on~. 

When gOOI.2" = 0, it is impossible to determine the gij,oo' 
Consequently, the characteristic hypersurfaces coincide 
with the null hypersurfaces, as in general relativity. 

V. THE SCALAR-TENSOR VERSION OF THE THEORY 
WHENb=O 

In order to solve the Cauchy problem when b = 0, we 
have been led to replace the primitive fourth-order theory by 
a second-order scalar-tensor theory. This equivalent version 
can be deduced from a variational principle. In fact, the La­
grangian density 

2' = ~ -g[(1 + aQ)R - ~aQ2] - K2' m (48) 

yields the field equations 

(1 + aQ)S,.,v + AaQ2g,.,v + ag,.,vDQ - aQ;p;v = KT,.,v' 
(49) 

Q=R, (50) 

which are strictly equivalent to the starting equations (26). 
The Lagrangian density (48) belongs to the class of La­

grangian densities proposed by O'Hanlon 7 in order to pres­
ent a covariant model of the massive dilaton theory suggest­
ed by Fujii. 8 Starting from densities of the kind9 

(51) 

where cp is a scalar field, O'Hanlon takes for the potential 
f(cp): 

(52) 

With this potential, the Lagrangian density (51) is equi-
valent to (48). It is easily verified by defining 

cp = 81TK-'(1 + aQ), 

CPo = 81TK-', m2 = - 1/3a. 

Such an equivalence shows the purely geometrical na­
ture ofthe theory corresponding to (52). This result is the 
more interesting as it is not isolated. Indeed, we will now 
demonstrate that the class of the scalar-tensor theories de­
rived from (51) coincide with the class of the fourth-order 
theories yielded by the Lagrangian densities 

2' =I=iF(R) -K2' m' (53) 

where F is any real function of class C 3 different from the 
affine function. 

Varying (53) with respect to g"'v, we get the field equa­
tions lO 
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F'Rj.Lv - !Fgj.Lv + FH(g,.,v DR - R;j.L;v) 

+ FIH(gj.LvR;J.R;J. - R;j.LR;v) = KT,.,v' (54) 

where a prime denotes a derivation with respect to R. Using 
the identities 

[F'(R )L,.,;v =FH(R )R;,.,;v +F"'(R )R;j.LR;v' 

Eqs. (54) become" 

F'Rj.Lv - !Fgj.LV +gj.LV DF ' -F~;v =KT,.,v· (55) 

Now the variational principle applied to (51) leads to 
the equations 

cpRj.Lv - HRcp + m 2f(cp )]gj.LV + gj.LVDcp - Cp;p;v = 81TT,.,v, 
(56) 

R = - m 2f'(cp ), (57) 

where the prime denotes here a derivation with respect to cpo 
We may note that the propagation equation for the scalar cp 
given by O'Hanlon is obtained by contracting Eqs. (56) and 
inserting the expression (57) of R: 

3Dcp + m2(cpf' - 2f) = 81TT. (58) 

Equations (55) are changed into Eqs. (56) under the Le­
gendre transformation (R,F)-(cp,J) defined by 

Kcp = 81TF'(R), 

- Km2f(cp ) = 87T(RF' - F). 

(59a) 

(59b) 

This transformation is formally regular if F H (R ) does 
not identically vanish. [Note that F H (R ) identically null cor­
responds to the Lagrangian function of general relativity.] 
Differentiating (59b) and taking into account (59a), we get 

- m 2 df = R dcp, 

relation equivalent to Eq. (57). 
Conversely, Eqs. (56) are changed into Eqs. (55) under 

the dual transformation of (59), 

R = - m 2f'(cp ), 

81TF(R ) = - Km2(cpf' - f). 

VI. CONCLUSIONS 

The solution of the Cauchy problem for the fourth-or­
der theories derived from the family of Lagrangian densities 
(1) depends upon the values of the parameter b. 

A. When b #0, the Cauchy problem can be solved for 
Cauchy data consisting of the potentials gj.Lv and of their 
derivatives gj.Lv,O' g,.,v,oo, gj.LV,OOO on a spacelike hypersurface ~ 
locally described by X O = 0. Two cases have to be carefully 
distinguished: 

1. If3a + 2b # 0, the Cauchy data must satisfy fourini­
tial constraint equations, exactly as in general relativity. 

2. If 3a + 2b = 0, two supplementary constraint equa­
tions, RI.2" = 0 and R.ol.2" = 0, are implied by the field equa­
tions. Moreover the six primitive dynamical equations must 
be written in a modified form consistent with these supple­
mentary constraints. 

In each case, the constraint equations are propagated 
by the dynamical equations once they are fulfilled on ~. 

B. When b = 0, the Cauchy problem cannot be solved 
for the Cauchy data specified in the case where b #0 since it 
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is impossible to determine the gij,OOOO from the dynamical 
equations. As a matter of fact, the fourth-order theory ob­
tained when b = 0 is equivalent to a second-order scalar­
tensor model of gravity. The unknown fields of this model 
are the ten potentialsg/Lv and a scalar field Q which happens 
to coincide with the scalar curvature R as a consequence of 
the field equations. Hence the Cauchy data consist of the 
values of g/LV' g/LV,O' Q, and Q,o on the initial hypersurface 2. 
These data must satisfy the condition 1 + aQII #0 and four 
initial constraint equations. Once they are fulfilled on 2, the 
constraint equations are propagated by the dynamical equa­
tions of the model, and consequently the equality Q = R 
holds in a neighborhood of 2. In that theory, the scalar cur­
vature R plays the role of a massive scalar field, and its values 
must be given on the initial hypersurface 2 together with its 
normal derivative in order to ensure the determinism. 

Moreover, we have shown that the scalar-tensor model 
which corresponds to b = 0 can be identified with one of the 
theories of 0' Hanlon. We have generalized this conclusion: 
The class of the scalar-tensor models of gravity proposed by 
O'Hanlon has been proved to be indistinguishable from the 
class of the fourth-order theories derived from the Lagran-

giandensities 2' =,.;=g F(R) - K2' m' whereF(R )isany 
real function of R such that F" (R ) does not identically van­
ish. This result should be very useful to treat the Cauchy 
problem related to this class of theories. 

APPENDIX A 

We have to show that there exist some coordinate trans­
formations of class C 4 and piecewise continuous of class C 6 

which reduce the derivatives g/LO,OOOO to any specified values 
on 2 but affect neither the Cauchy data nor the gij,OOOO on 2. 

Let n be an open subset of V4 such that n n 2 # 0. We 
call n + (resp. n -) the part of the open n corresponding to 
X

O > 0 (resp. X
O < 0). For a function! n-R, which may be 

discontinuous across 2, we use the classical notation 

f; (Xi) = lim f(xO,x i), f ~ (Xi) = lim f(xO,x i). 
xo_-. + 0 xo __ - 0 

Let us now consider the coordinate transformation de­
fined on n: 

xl-' = x A + [(x°j'/I20jcp I IA \x') on n +-, 

on nn2, (AI) 

x A ' = x A + [(XO)5 1120 j cP - IA I(Xi) on n -, 
where the cP +- IA I(Xi) [resp. cP - IA I(xi) J are functions of the Xi 
of class C 4 and piecewise continuous of class C 6 on n + (resp. 
n -). This transformation does not change the coordinates of 
the points on 2, since 2 is described by XO = O. 

Clearly the coefficients of transformation associated 
with (AI), 

a a' 

Aa'-~ 
A - aXA ' 

are of class C' and piecewise continuous of class C 5 on n. On 
the hypersurface 2, we have indeed 

A ~I.l' = (A ~'); = (A r)~ = c5~ , (A2) 
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A t/L''''/Lnl.l' = (A ~:/L''''/LJ; = (A ~:/L""/LJ; = 0 for n<3. 

Consequently the coordinate transformation (A 1) is of class 
C 4 and piecewise continuous of class C 6

• 

The metric components are transformed as 
. /3' 

g/LV =A;A v ga'/3" (A3) 

Differentiating (A3) with respect to XO an appropriate 
number of times, then substituting ao with A ~'a a' , and using 
(A2), we find that the Cauchy data are not modified by the 
transformation (A 1 ): 

g/L"II = g/L'V'I.l',oo·,g/LV,OOOI.l' = g/L'V',O'O'O'I.l'· 

Now, the derivatives of index 4 are transformed as 

gln,(X){){) = A ;;'A ~'A {A ~'A ~'A ~ 'g"'fJ'.Y'<'lt'A' 

a' f3' (}" {3' [ + (A IL,(){){){)A" + A ILA ",(){)Oo)ga'fJ' + ... j, 
where the symbol [ ... J denotes quantities which vanish on 2 
according to (A2). Taking into account the following rela­
tions, 

(A a' ) + - c5 c5 {) + lal 0,/L,/L,/L,,0.l' - /L,O /L,O /L,oCP , 

(A a' ) - - {) c5 c5 - lal O,/L,/L,/L,O.l' - /L,O /L,O /L'oCP , 

we get 

gij,OOOOI.l' = gi'/,o'o'o'o'II' 

(g/LO,oooo); = (g/L'0',0'0'0'0,)1 + {)/LoCP + lalgaO + cP + lf3)g/L/3' 

(g/LO,oooo)~ = (g/L'O"O'o'o'o')~ + c5/LoCP -Ia)gao + cP -1/3)g/L/3' 

Therefore, the derivatives g/LO,OOOO can be reduced to specified 
values on each side of the hypersurface 2 by an appropriate 
transformation (AI), while the derivativesgij,OOOO remain un­
changed. In particular, the functions cP + la) and cP - la) can 
always be chosen so that theg/Lo,oooo are continuous across 2. 

APPENDIX B 

In the case of 3a + 2b = 0, let us suppose solved the 
problem of finding Cauchy data which satisfy the constraint 
equations (16), (21), and (23) on 2. Our purpose is to prove 
that the field equations (24) are equivalent to Eqs. (9) when 
a = - jb. 

1. Let us assume that Eqs, (9) are satisfied by the metric. 
Since the constraint equations (16) are supposed to be satis­
fied on 2, Eqs, (12) hold in the neighborhood of 2. (The 
analysis of Sec. II is valid even in the case where 
3a + 2b = 0,) Hence R = 0 in the neighborhood of 2. Con­
sequently, it follows from the definition (25) that 

Gij =Gij =0. 

Therefore, Eqs, (24) are satisfied by the metric. 
2. Conversely, let us admit that Eqs. (24) are verified by 

the metric. Then the identity 

yields the equation 

-R + !bDR =0. 
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The unique solution of this equation satisfying the ini­
tial conditions (21) and (23) is 

R=O, 

which implies that DR = O. So Eqs. (24) are reduced to 

(Bl) 

It results from (B 1 ) that the G ~ are related to the G ~ by 
the relations 

(B2) 

Because of these relations, the conservation identities 
(13) give four equations similar to Eqs. (15): 

(B3) 

where the coefficients A ,a a and B '! are continuous quanti­
ties built from the gat/ and their first derivatives. [As in the 
discussion ofEqs. (15), we suppose llO > 0.] For the initial 
conditions (16), the only solution of(B3) is 

G~ =0. 

Hence Eqs. (B 1) are reduced to Eqs. (9) in the case where 
3a + 2b = 0, and Eqs. (12) are satisfied. Q.E.D. 
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A probabilistic rejection test for multivariable sensitivity analysis is presented. The test is applied 
by randomly changing all the assumed unimportant (those having low sensitivity values) input 
parameters simultaneously and calculating the appropriate response. It is shown that by 
repeating this procedure N times, where N is much smaller than the number of input parameters, 
it is possible to assign a probability limit to the assumption that a high sensitivity parameter exists. 
The application of the test is demonstrated in a nuclear waste disposal problem. 

PACS numbers: 06.20.Dk, 02.50.Cw 

1. INTRODUCTION 

The development oflarge computer codes is enabling us 
to model in great detail many physical systems. Such codes 
provide solutions while taking into account large numbers of 
physical effects. However, due to the fact that there are 
many input parameters involved and the cost of running the 
computer is high, there are difficulties in performing survey 
studies. These difficulties are reflected in sensitivity ques­
tions which arise in all design and safety analyses. In such 
analyses, the effect of changes in the input parameters on the 
calculated results is important, namely, sensitivity analysis. 

There are three approaches to sensitivity analysis. The 
first one is based on the use of adjoint functions. 1 Although 
this approach was successfully applied to many engineering 
and physics problems, it has the drawbacks that it is neces­
sary to solve an additional set of equations for each response 
studied. For large and complicated codes which consist of 
many equations, an additional set of equations requires a 
considerable amount of effort. The second approach is one of 
the forms of the response surface method. 2 A variety of ex­
perimental design theories3

-
5 are used in order to change the 

input parameters. These altered data sets are used for calcu­
lating the changes in the response of interest. These calculat­
ed results are then used to construct the response surface, 
which is fitted with a simple functional from the sensitivities' 
derivations. The advantage ofthis approach is that the origi­
nal computer code is used for calculating the sensitivities. 
The main limitation is the number of computer runs needed, 
which in practice limits the number of input parameters that 
can be considered. The third approach is the "brute force" 
one. By this approach, each of the input parameters is 
changed slightly and the change in the response is calculated 
and so is the sensitivity component. The advantage of this 
approach is the straightforward usage of the code. The limi­
tations are the number of runs which is dependent on the 
number of input parameters, and it is limited to small varia­
tions of the input parameters. 

In many practical situations, we have systems with hun­
dreds or thousands of input parameters. Treating such cases 
with the current response surface or "brute force" method is 
impractical, without screening of the important input pa­
rameters. 

In most of the physical systems, the number of imp or­
tant parameters is small. By important parameters we mean 

those parameters with high sensitivity values. Physical sys­
tems with many important input parameters tend to be un­
stable. 

In many cases, intuition or previous knowledge enable 
us to know in advance which of the input parameters is im­
portant. So instead of dealing with many input parameters, 
we can consider only the few important ones, by using the 
response surface or the "brute force" methods. However, 
intuition might fail and previous knowledge might be incom­
plete. However, we are assuming that the probability that 
there are no important parameters after screening is not van­
Ishingly small. As a result, one can rely on such screening 
only if we have a test to validate our choice of important 
input parameters. Such a test was suggested,6 however, with­
out mathematical rigorousness. 

This test was inspired by the "statistical screening" pro­
cedure suggested by Durston and Krieger7 and later by 
Krieger. 8.9 Although the procedures of the "statistical 
screening" procedure and the suggested rejection test are the 
same, the fundamental bases of the two procedures are dif­
ferent. 

The purpose of this paper is to present such a rejection 
test with all the mathematical rigorousness. The application 
of the test is demonstrated by an example from nuclear waste 
disposal analysis. 

2. THE REJECTION TEST 

Given the problem of estimating the relative sensitivity 
of a model response R to many modeling parameters a" the 
following methodology can be developed. Assume first 

M aR 
oR~ I -oa" (1) 

'=1 aa, 
where DR = R - Ro, R is the perturbed response value, and 
Ro is the base case response value; oa, = a, - ao" and a, is 
the perturbed parameter value and a o, is its base case value; 
and the number of the input parameters is M. 

Equation (1) can be rewritten in relative terms as 

DR ~ I aR1Ro oa, = I Sa (2) 
Ro -,= 1 aa,lao, ao, ,= 1 ' " 

whereS, = (aR IRo)l(aa,lao,) is called the sensitivity ofR to 
a and a, = oaJa,. 
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Consider that by previous knowledge we have screened 
PI important parameters. The number of remaining param­
eters is K = M - PI' These are the parameters to which we 
assign low sensitivity, namely, Si are small. Due to the fact 
that our previous knowledge is not complete, there is a non­
zero probability that among the K parameters there are some 
parameters which have high sensitivity. The aim of the rejec­
tion test is to find the probability that there are high sensitiv­
ity coefficients among the K parameters. Changing the input 
parameters by + 1 % or - 1 % randomly, Eq. (2) will have 
the form 

DR K 
- X 100 = I S;'i> 
Ro i=1 

(3) 

where ri = ± 1. Making N different runs so that in each run 
the input parameters are changed by ± 1 %, we will have 

DR. K 

-RJ X 100 = I Sirji = Srj , j= 1, ... , N N <K. 
o i= I 

(4) 

Iffor N runs DR/Ro'=O, what is the probability that 
there are Si components different from zero? 

Assume that there are I components of the vector S 
which are different from zero. The value I<K is unknown. 

The nonzero components of the vector S can be consid­
ered as a new vector SI with a dimension I satisfying the 
equation 

I 

S(1)·a. = ~ SaO 
J L n jn = , (5) 

n= 1 

wherej = 1, ... ,N and ajn = + lor - 1. The vectors aj are 
subvectors of the vectors rj . Forj = 1, we have 

I 

S(I)'a l = I Snaln = O. (6) 
n=1 

For a given vector S(t) there are other vectors with com­
ponents of ± 1 beside a l which are orthogonal to S(\). For 
example, az = - a l will also be orthogonal to S(1). The num­
ber of vectors of the type a which are orthogonal to S(I) de­
pends on the particular nature ofS(I). Define a value QI as 
the number of vectors of the type a which are orthogonal to 
S(\). Since the nature of the vector S(1) is not known, the value 
QI is unknown. The number of all possible vectors of type a is 
2/. Thus the probability of obtaining Eq. (6) when the vector 
a l is chosen randomly is 

(7) 

The probability of obtaining Eq. (5) for N random runs 
will be 

(8) 

namely, the probability that a certain vector S(1) with I non­
zero components will satisfy Eq. (5). 

The value QI will be the largest when the vector S(1) has 
the property of SI = Sz = S3 = ... = SI for I even, and 
Sz = S3 = ... = SI' SI = 2Sz for I odd. The proofs of these 
statements are given in the next chapter. Thus, 

( 
I-I ) 

QI<2 (I + 1)/2 for I odd, (9) 

2801 J. Math. Phys., Vol. 24, No. 12, December 1983 

(10) 

Thus the probability that any vector S( 1) with I nonzero com­
ponents which satisfies Eq. (5) will be bounded by 

p(I,N)<lQ(I)/2I]N. (11) 

Thus the probability that any vector with nonzero com­
ponents will satisfy Eq. (5) is 

P(K, N) = It/(I, N)<~ {[ (~)f21 r 
+ [C~ J/22I r} -[CK/~ + JfK r 

= R (K, N) (12) 

for K even, and 

P(K, N) = It/(I, N)«Kl~:/2[ (~)}21 r 
+[C~I~21r =T(K,N) (13) 

for K odd. 
The values of R (K, N) and T (K, N) are given in Table I. 

From these values, it is obtained that for N> 10 the upper 
bound on the probabilities practically does not depend on 
the number of input parameters. Furthermore, for N> 10, 
the probability of obtaining nonzero coefficients with the 
rejection test is very small. 

Assume that a given system can have two possible 
states: Ao, A I' (Acf'A I = 0) such that the probability ratio 
P (A 1)/ P (Ao) is known to have an upper bound P (A 1)/ P (Ao) 
<y. Let CN denote an "event," i.e., a possible outcome of an 
experiment E done on/with the system such that the condi­
tional probabilities P(CN lAo) = 1 and P(CNIAtl<aN and 
C N can be chosen such that aNY <.1. One now wants to reject 
the hypothesis that the system is in state A I by stating that if 
P(AIICN)<.B (.Bbeingapredeterminedlimit, say, 10-3), then 
A I is rejected. Now 

TABLE L Rejection criterion. 

K The rejection 
N Number of input criteria 
Number of trials parameters RorT 

6 15 0.021 121 8 
8 15 0.0044946 
6 20 0.0202510 
8 20 0.0044456 

IO 20 0.0010442 
12 20 0.0002530 
14 20 0.0000622 
6 25 0.0212074 
8 25 0.0044977 

IO 25 0.0010471 
12 25 0.000 2532 
14 25 0.0000622 
6 30 0.0202510 
8 30 0.0044456 

IO 30 0.0010442 
12 30 0.0002530 
14 30 0.0000622 
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P(AIICN)P(CN) =P(CNIAIlP(A I), 

P(AoICN)P(CN) = P(CNIAo)P(Ao), 

and, upon division, 

P(AIICN) = P(CNIA I) P(AIl 
I -P(AIICN) P(Ao) 

yields 

(14) 

(15) 

(16) 

One then conducts the experiment choosing C N to be such 
that aN < /3 I y. If C N comes out in the experiment, A I is re­
jected, and the system is assumed to be in state Ao. 

Let us now proceed one step further: Let 

!CNJ~=I 
be a set of possible outcomes of the experiment E with the 
conditional probabilities P (C N lAo) = I V Nand P (C N 
IA I) =aN,N= 1, ... ,00 known. One may then set a limit/3 (a 
rejection limit) and conduct the experiment E. If the out­
come C N is such that aN </3 I y, the possibility that the sys­
tem is in stateA I is rejected. Now suppose that Al is a state 
composed of the union of K mutually exclusive substates 

K 

Al = uBI' BI0iJ, = 0, V J =/=J 
i=1 

and suppose that P (C NIB I) is known. Then 
K 

P(CNIAIl = I P(CNIBI )· 
1=1 

(18) 

This is the general structure of the suggested test, with 
the following identifications: 

Ao-(the vector S(O = 0, all its components are zero), A 1-

(at least one component ofS(1) differs from zero), Br(exactly 
J components of S(1) differ from zero), E-the experiment 
(pick up N vectors aj = (~, ... ,aj) such tha tin = ± I with 
probability! and calculate the N sums Dj = S(1)aj ), CN-the 
event (All sums are zeros, i.e., Dj = 0 V j. 

To identify the above parameters with the previously 
mentioned quantities, it is easy to see from the definitions 
that P(CN IBI ) is identical to p(J,N) ofEq. (7) and, conse­
quently,p(K,N) is identical to P(CN IAI)' 

Thus we have two events: A I-there are nonzero ele­
ments in the vector S. Ao-there are only zero elements in the 
vector S. A priori we have P (A 1) and P (Ao). It might be that 
P (A I) is much larger than P (Ao). However, on the basis of the 
test, we have the assumption that P (A 1)1 P (A 0) is finite. Also, 
although y may be as large as we choose, it nevertheless has 
to be finite. The estimation of the value of y [P (A))I P (Ao) < y] 
is determined by our confidence in the screening of the im­
portant parameters. The more confidence we have in our 
screening procedure, the lower is the value of y. The value 
aN in Eq. (17) is bounded by 

aN<R (K, N), Keven, 

aN<T(K, N), K odd. 

(I8a) 

(18b) 

It can now be seen from Eq. (17) and the following dis­
cussion that 
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K K 

= IP(CNIBI)y= I p(J,N)y 
1=1 1=2 

( 19) 

Thus the rejection test can be stated as follows: the as­
sumption is that the vector S fulfills Eq. (5) and has 0 < J <K 
nonzero components. P (K, N)y is an upper bound for the 
probability of the assumption being true. If P(K, N)y is 
smaller than a predetermined value/3, we reject that assump­
tion. What is actually checked against /3 is R (K, N)y or T (K, 
N )y, yet if they are smaller than /3, so is P (K, N )y. 

A simple example of the test is given in Appendix A. 

3. COMBINATION OF VECTORS 

Let Sn = (SI,S2"",Sn) be an n-dimensional vector. We 
define a combination of a vector as a number obtained from 
Sn by adding andlor subtracting all its terms, i.e., let an 
= (al, ... ,an) be a vector such that la; I = I, i = l, ... ,n, then a 

combination of Sn is the number x = Sn ·a. In general, there 
are r different possible a's and thus 2n possible combina­
tions. Given a number x one may ask how many combina­
tions of a vector U yield x. This number is denoted by N (Un' 
x) and we can then ask: For a given x, which is the vector ~ 
for which N(~, x) is maximum. We thus denote 

Kn(x) = Max {N(Un, x)J, (20) 
UnEEn 

where En is the n-dimensional Euclidean space. If N (Sn' 
x) = Kn (x), we say that Sn is maximum for x. 

We first show that in order to discuss K n (x), it is suffi­
cient to consider only positive component vectors. 

Lemma 1: Given a vector Sn = (SI"",Sn) and the num­
ber of combinations Sn that yield x is N (Sn, x), then for the 
vector S~ = (ISII,lszl, ... ,lsn I), we get N(S~, x) = N(Sn, x). 

Proof LetabesuchthatSn·a=x. Then (la;1 = + 1) 
Sn·a = Sial + a2s2 + ... + anSn = a)D)s) 
+ a2D2s2 + ... + anDn ISn I = x, where D; = s;lls; I = ± 1. It 

is clear that the vector aa = (aIDI, ... ,anDn) fulfills S~aa = x. 
Thus to every combination of Sn that yields x, there exists a 
unique combination ofS~ that yields x. The opposite is also 
trivial to show. 

From now on, we will consider only vectors with posi­
tive components. 

Lemma 2: Kn(g) is independent ofg=/=O. 
Proof Let Sn be the maximum for gland let E8 be the 

set of all vectors a such that Sn·a = gl' Let g2=/=gl and 
a = gzlgl' Consider the vector S~ = a·Sn. Then ifaEEa , we 
get S~.a = aSn·a = ag I = gz. This means that N (S!, 
g2) = Kn(gIl· IfweassumethatKn(gz) >N(S!,gz), then there 
exists a vector W n and a set of Kn (g2) different vectors aZ such 
that for each a2

, W n aZ = gz. In that case, let us consider the 
vector W~ = Wn/a; clearly for each a2

, W~ ·a2 = gl" Thus 
N(W~, gl) = Kn(gz) and this leads toN(W~, gl»N(Sn' 
gz) = Kn (g Il, which is an obvious contradiction. Thus Kn (g) 
is independent of g. 

The conclusion of the above lemma is that the maxi­
mum number of combinations to yield a nonzero number is 
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the same for any such number (though a different vector may 
be maximum for different numbers). We will thus denote 
that maximum by Kn (I) and, for the case thatg = 0 (which is 
not included in the above lemma), we denote by Kn (0). 

The objective of the following discussion is to find K n ( I) 
and Kn (0). Noting now that if Sn·a = g, then Sn ( - a) 
= - g, we also conclude that N (V,g) = N (V, - g). 

Lemma 3: IfSn = (SI",sn) is maximum for g, then the 
vector Sn + 1 = (SI'''Sn, g) is maximum for zero. 

Proof Let us denote any combination ofSn by Cn and a 
combination ofSn + 1 by Cn + 1 • Let us consider the combina­
tions of Sn + 1 that equal zero. 

Cn + 1 =Cn +g=~Cn = -g 

or 

Cn + 1 =Cn -g=~Cn = +g. 

Thus we may write 

N(sn+ I' 0) =N(Sn,g) +N(Sn' -g) 

= Kn(g) + Kn(g) = 2Kn(g)· 

Let us next consider any general (n + I)-dimensional vector 
Un + 1 (u1'''u n + I) and Vn = (ul·"u n )· Let us denote a comb i­
nation ofVn + 1 by Cn + 1 and a combination ofVn by Cn • 

Then the combinations of V n + 1 that equal zero may be ob­
tained by 

or 

Cn + 1 = Cn - Un + 1 = 0, Cn = Un + I' 

Thus 

N(Vn+ 1> 0) = N(Vn, un+ I) + N(Vn, - un+ I) 

= 2N(Vn, Un + I )< 2Kn(I). 

Corollary: K n + I (0) = 2K n (I). 

A. Combinations that yield more than one number 
In order to proceed, it is now necessary to consider 

sums of combinations that yield more than one number. Let 
Vn be any n-dimensional vector and let xp = (X I,X2, ... ,xp) be 
a set of P positive different numbers. Let, as before, N (V, Xi) 

be the number of combinations of V that yield Xi' We now 
define the quantity 

B(V,XI,X2, ... ,xp)=B(Vn,xp)= f N(Vn,x i ), (21) 
;= 1 

which is simply the total number of combinations of V that 
yield any component of xp' For a given vector xp , we may 
inquire for which vector Vn' B(Vn, xp ) is maximum and de­
note 

Then we may ask for which Xp Bm(xp) is maximum and de­
note 

(22) 

Dn(P) is the maximum possible number of combinations of 
an n-dimensional vector that yields P positive values. Clearly 
Dn(p)<p·Kn(I). 

Equality will imply that a certain vector can simulta­
neously be a maximum for p different numbers. At this 
point, an important observation should be made. Suppose we 
divide xp into two separate vectors xp, ' xp , such that 
PI + P2 = p. Then by virtue of the fact that 

max [B (U, xp) I = max I B (U, xp, ) + B (U, xp, ) I 
<maxIB(V, xp,)j + maxlB (V, xp,)j, 

we obtain the relation 

(23) 

With the aid of the above concepts, we now prove the follow­
ing lemma: 

Lemma 4: Let S2n _ I be a (2n - 1 i-dimensional vector 
with the property 

D2n _ I (p) = B (S2n _ I' g, 3g, Sg, ... , (2p - I).g). 

That is, the maximum possible combinations to getp positive 
different numbers for any (2n - I )-dimensional vector is 
equal to the number of combinations of the vector Sn _ I that 
yields anyone of the p positive different numbers g, 
3g, ... ,(2p - I)·g. Note that puttingp = 1 implies that S2n _ I 

is also maximum for g. Let S2n + I be the vector obtained 
from S2n _ I by adding two components each of which equals 
g, i.e., S2n + I = (S2n _ I ,g, g), then S2n + I also has the prop­
erty 

D2n + I (p) = B (S2n + I' g, 3g, ... , (2p - I)·g). (24) 

Proof Let us first consider the combinations of S2n + I 

that yield any component of the set (g, 3g, ... , (2p - I).g). Let 
us denote by C2n + I a combination of S2n + I . Then for each 
combination of S2n _ I (C2n _ I ), there are four combinations 
of S2n + I' namely, C2n + I = C2n _ I ± (g ± g). Thus g is ob­
tained when 

C2n + I = C2n - I + (g + g) = g-.C2n _ I = - g 

or 

C2n + I = C2n - I + (g - g) = g-,C2n - I = g 

or 

C2n + I = C2n - I - (g - g) = g-,C2n - I = g 

or 

C2n + I = C2n _ I - (g + g) = g-,C2n ___ I = 3g 

Following the same procedure for 3g, Sg, ... , (2p - I )'g, one verifies that any of these values is obtained by a different 
combination of S2n + 1 , when C2n _ I takes anyone of the following values: 

-g g g 3g to get g 
g 3g 3g Sg to get 3g 

3g Sg Sg 7g to get Sg 

(2p - 3)g, (2p-l)g, (2p - l)g, (2p + I)g to get (2p-l)g. 
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With the above considerations and using the maximum property of SZn _ I , we may now write 

B (SZn + I' g, 3g, ... , (2p - I)g) = B (SZn _ I' g, 3g, ... , (2p - 3)g) 

+ B (SZn _ I' g, 3g, ... , (2p - I)g) + B (SZn _ I , g, 3g, ... , (2p - I)g) 

+B(SZn_I' -g,3g, ... ,(2p+ 1)g)=Dzn_l(p-I)+2Dzn_l(p)+Dzn_I(P+ I). 
(25) 

Equation (24) states the fact that the p different values of 
CZn + I are obtained from 4p values of CZn _ I' which are not 
all different. 4p is divided into four sets ofp - I,p,p,p + 1, 
values such that in each set, all values are different. Now let 
Vzn + I be any (2n + I)-dimensional vector and (xl, .. ·,xp) any 
set of p positive different numbers. We then wish to show that 

B(Vzn + I' XI> ... , xp)<B (SZn + I' g, 3g, ... , (2p - I).g). 

Let us denote the last two components ofVzn + I by a and b 
and assume with no loss of generality a>b. And let us denote 
a combination of the first (2n - I) terms ofVzn + I by CZn - I . 

Then a number XI may be obtained as a combination of 
Vzn + I by the following four possibilities: 

CZn _ I + (a + b) = XI' 

CZn _ I + (a - b ) = X I> 

CZn _ 1 -(a-b)=xI' 

C2n _ I - (a + b ) = X I' 

Denoting a + b = /3 > 0 and a - b = a>O (a </3 ), we get for 

Xp- .. ,Xp 

C2n _ I + /3 = X r---+CZn _ I = X I - /3 = b : , 

C2n _ 1 + a = X I--+CZn _ I = X I - a = b i, 
CZn _ I - a = X I--+CZn _ 1 = X I + a = b ~ , 

CZn _ 1 -/3=xI--+CZn - 1 =X 1 +/3=b!, 

CZn _ 1 + /3 = x 2--+CZn - 1 = Xz - /3 = b i, 
CZn _ I + a = x 2--+CZn _ 1 = Xz - a = b ~, 

CZn - 1 +/3=xp--+Czn - 1 =xp -/3=b~, 

CZn _ 1 +a=xp--+Czn _ 1 =xp -a=b~, 

CZn _ 1 -a=xp--+Czn _ 1 =xp +a=bj, 

CZn - 1 -/3=xp--+CZn - 1 =xp +/3=b~. 

We see that the p values of xl,. .. ,xp are obtained in different 
combinations when CZn _ 1 takes anyone of the 4p values of 
b : b ~ , ... ,b ~. If all 4 values are different, then we immediate­
lyobtain 

B(VZn+ I' XI' ... , xp) = B(V2n _ l , b:, ... , b~)<D2n_1 (4p)<D2n _ 1 (p - 1) + 2D2n _ 1 (p) + D2n - 1 (p + I) 
= B(Szn+ J' g, ... , (2p - I)·g). 

Thus we have to find what are the maximum possible identical (in absolute value) numbers in the set b : ···b ~. This under the 
constraints that xI"'xp are all positive and different and/3> a>O. A close examination of all the possibilities reveals that the 
maximal number of identical (in absolute value) terms is obtained if the following choice is made: 

X I = a = b = S > 0 /3 = 2s a = 0 --+b: = - S b i = S b ~ = s b! = 3s then 

Xz = X I + 2s = 3s --+b ~ = s b ~ = 3s b ~ = 3s b ~ = Ss 

X3 = X z + 2s = 5s -b i = 3s b ~ = Ss b i = 5s b! = 7s 

Xp = xp_ I + 2s = (2p - l)s -b~ = (2p - 3)s, b~ = (2p - 1)s, bj = (2p - l)s, b~ = (2p + I)s. 

(The choice X I = a = b is made with no loss of generality and 
any other Xi could be taken instead. The same holds for every 
step.) Thus we may write, arranging b : ···b ~ in four groups, 

B(VZn+ l' XI' ... , Xp) 

= B (VZn _ I' b :, b i. b i, ... , b~) 
+ B (VZn _ J , b i, b L ... , b ~) 

+ B (VZn _ I' b ~, b;, ... , b ~) 

+ B (V 2n _ J , b i , b !, b !, b ;, ... , b ~) 

<DZn _ J (p - I) + 2DZn _ J (p) + DZn _ 1 (p + 1) 

= B (SZn + l' g, 3g, ... , (2p - l)g). (26) 
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Lemma 5: If the vector Sn = (sJ, ... ,sn) has the property 
B (Sn' 0, 2g) = Dn(2), then the vector Sn + 1 = (SI"'Sn, g) is 
maximum for g. 

Proof: Again with the notation of en + J , en being com­
binations ofSn + J and Sn correspondingly, we obtaing from 

Sn+ J by 

or 

Thus 
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N (Sn + l' g) = N (Sn' 0) + N (Sn' 2g) 
= B(Sn' 0, 2g) = Dn(2), 

and it is easy to verify (as in Lemma 3) that the number of 
combinations of any (n + 1 I-dimensional vector that yields a 
positive given number cannot exceed Dn(2). 

Theorem: (a) For any odd integer (2n - 1), the identity 
vector 

S2n - 1 (g) = (g, g, g, ... , g, g) 

(all components equal to g) is maximum for g and 

B(S2n _ 1 (g), g, 3g, ... , (2p - l)g) = D2n _ 1 (p), (27) 

and the vector 

S2n _ 1 (0) = (2g, g, g, ... , g) 

(first component equals 2g, all others = g) is maximum for 
zero. 

(b) For any even integer 2n, the identity vector 

S2n(0) = (g, g, ... , g) s; g i = 1, ... ,2n 

is maximum for zero and 

S2n (g) = (2g, g, ... , g), SI = 2g, s; g, i #- 1 

is maximum for g. 
Proof The above theorem is proved using the following 

induction. 
Let us assume that the vectors S2n _ 1 (g) and S2n _ 1 (0) 

are given as in the theorem with the properties stated in the 
theorem. Given this, we will prove that S2n (0) and S2n (g) 
have the properties stated in the theorem and the identity 
vectors S2n + 1 (g) = (g,g, ... ,g), S; = g and S2n + 1 (0) 
= (2g,g, ... ,g), SI = 2g, S; = g, i = 2, ... ,2n + 1 have the same 

properties as S2n _ 1 (g) and S2n _ 1 (0). 
From Eq. (21), it is clear that 

B (S2n _ 1 (g), g, 3g) = D2n _ 1 (2); 

also 

B (S2n _ 1 (g), g, 3g) = N (S2n _ 1 (g), g) + N (S2n _ 1 (g), 3g) 

= (2n - 1) + (2n - 1) = ~(2n - 1). 
n n+l n+l n 

Let us now consider 

B (S2n _ 1 (0),0,2g) = N (S2n _ 1 (0), 0) + N (S2n _ 1 (0), 2g) 

= 2e
n

:: 2) + [ en
n ~ 12) + e: ; 12) ] 

=~(2n-l). 
n + 1 n 

Thus 

B (S2n _ 1 (0), 0, 2g) = D2n _ 1 (2). (28) 

From Eq. (28) and Lemma 5, we immediately conclude that 
the vector 

2n 
~ 

S2n (g) = (2g,g,g,g, ... ,g) = (S2n _ 1 (0), g) 

is maximum for g. And since S2n _ 1 (g) is maximum for g, we 
conclude, using Lemma 3, that the vector S2n (0) = (g'2~,g) is 
maximum for zero. 

We now note that 
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and 

K 2n (1) = C ~ J thus K 2n (l) <K2n(0). 

Also we get 

N(Sln(O), 2g) = C ~ J =K2n(I). 

Thus S2n (0) is both maximum for zero and 2g. Thus 
B (S2n (0)) (S2n (0), 0, 2g) = D2n (2). And again using Lemma 5, 
we get the result that 

2n + 1 

~ 
S2n + 1 (g) = (g,g, ... ,g), S; = g, i = 1, ... ,2n + 1 

is maximum for g. And using Lemma 3 on S2n (g), we get that 

S2n + 1 (0) = (2g, g, ... g), SI = 2g, S; = g, i = 2, ... ,2n + 1, 

is maximum for zero. Furthermore, using Lemma 4 we see 
that S2n + 1 (0) has the property 

B (S2n + 1 (g), g, 3g, ... , (2p - l)g) = D2n + 1 (p). 

This concludes the transfer from (2n - 1) to (2n + 1) 
through 2n. Let us now consider the case n = 2, 2n - 1 = 3. 
Clearly, S3(g) = (g,g,g). It is maximum for g. And B (S3(g), g, 
3g) = 4, which is the largest possible number. Thus, 
B (S3(g),g,3g,5g, ... ,(2p - l)g) = D3(P). Also, S3(0) = (2g,g,g) 
is maximum for zero! 

Starting from (2n - 1), we may now proceed by the 
proven induction to see that the theorem holds for every n. 

Conclusion: From the above results, we have 

(29a) 

(29b) 

(29c) 

(29d) 

2n + 1 (2n + 1) 
D2n - 1 (P)= L k' 

k~n+1 

(2ge) 

4. APPLICATION OF THE TEST TO A WASTE DISPOSAL 
PROBLEM 

The test described above has been applied to a heat 
transfer problem in a hypothetical waste repository.6 The 
temperature profile within salt in the repository was deter­
mined to be the quantity of most interest from a design point 
of view for this test problem. This response was selected to 
provide the focal point of the sensitivity demonstration prob­
lem. A near-field single-level storage repository of spent fuel 
in salt6 was chosen to model the thermal behavior of a gen­
eric design. The disposal horizon of the repository was as­
sumed to have a thermal loading density of 60 kW lacre (15 
W 1m2) and its time behavior, as well as all the input param­
eters, are the same as those used in ORNL/ENG/TM-14, 10 

and are also given in Appendix B. The computer code used 
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to calculate the thermal conductivity for this analysis was 
HEATING 5. 11 This code uses finite-difference methods to 
solve heat transfer equations and solves both steady-state 
and transient heat conduction problems with spatially- and 
temperature-dependent thermal properties and time-depen­
dent heat generation rates. 

For this problem, 49 input parameters were considered. 
These parameters included all the material properties, 
boundary conditions, and modeling parameters in the repo­
sitory (see Appendix B). The sensitivity coefficients So 
i = 1, ... ,49, were estimated for Ro = Ts' where Ts is the mid­
plane temperature at the interface between the spent fuel 
assembly and the salt five years after burial. 

The numerical accuracy of the temperature profile cal­
culation by HEATING 5 with convergence criterion of 10-5 

was about 0.01 OF. Since the value of Ro is 155.69 OF 
(68.72 0q, the error in any response change is no better than 
bR / Ro = + 6.42 X 10-5

• Therefore, the minimum value of 
Sj that was termed to be useful was + 6.42 X 10-3 and im­
portance in terms of sensitivity coefficients was defined to be 
ISj I ;;;'0.01. Eleven sensitivity coefficients were assumed to be 
important. 

The exact sensitivity coefficients for these parameters 
were then obtained exactly by rerunning the code for each 
individual parameter change. These were the important sen­
sitivities: 

(1) sensitivity to the salt density p, 
(2) sensitivity to the heat capacity Cp ' 

(3) sensitivity to the salt conductivity at 32 OF (0 0q 
[k(32°)], 

(4) sensitivity to the salt conductivity at 122 OF (50 0q 
[k(122°)], 

(5) sensitivity to the salt conductivity at 212 OF (100 0q 
[k(212°)], 

(6) sensitivity to the initial temperature at 2000 ft (610 
m) [To (2000 ft)], 

(7) sensitivity to the distance between canisters D" 
(8) sensitivity to the canister radius R s ' 

(9) sensitivity to the thermal loading P, 
(10) sensitivity to the initial temperature at 2250 ft (686 

m) [To (2250 ft)], 
(11) sensitivity to the salt thermal emissivity hr' 

[Note: For (3), (4), and (5), the conductivity is given at dis­
crete temperature points.] 

In the second stage of analysis, these eleven parameters 
were held constant in all cases, and the rest of the parameters 
(M - Ptl = 38 were then randomly changed. Eight such 
runs were made to analyze the response temperatures for 
these runs. 

Thus values obtained for R ' = bR / Ro X 100 for this set 
of runs were R ,(1)",0, R ,(2)~0, R ,(3)",6 X 10-5 , 

R '(4)~ _ 6X 1O-5,R '(5)"'0,R '(6)~0,R '(7)~O,andR '(8)~0. 

The practically R ' can be considered as zero. The rejec­
tion test was applied to this case. By this test, we have found 
from the upper bound to the probability - aN that there are 
sensitivity components different from zero which will yield 
eight runs with R ' ~O less than 0.5% (see Table I). 

Due to our experience with this type of a problem, we 
were quite confident that we had screened out the important 
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sensitivities. Thus we estimated r to be less than 2. Thus by 
the rejection test we found that the probability that there are 
nonzero sensitivity elements is less than 0.01. We rejected 
this possibility. We have randomly chosen some of the input 
parameters and calculated their sensitivities. In all our 
checks, we indeed found negligible sensitivity values. 

5. SUMMARY 

We have found expressions for the probabilities that a 
certain unknown vector has nonzero components. It was 
found that by applying the rejecting test, it is enough to ob­
tain a very low probability for the existence of a vector with 
nonzero components. It was found that for 10 trials, the 
probability of obtaining nonzero component vectors is less 
than 1.1 X 10-3 and for 16 trials the probability is less than 
1.6 X 10 - 5 with a rapid reduction in the probability with the 
increased number of trials. It should be noted that for a vec­
tor with a number of components greater than the number of 
trials, the probability is almost independent of the number of 
the vector's components. Namely, the advantage of the re­
jection test lies in the fact that by making very few trials, we 
gain information on the input parameters involved regard­
less of how many we have. 

The input for the N runs in the rejection test are almost 
identical to those used in the "statistical screening" proce­
dure. 7

-
9 A discussion on the "statistical screening" proce­

dure was published by Perey.12 The difference between the 
runs in the two procedures pertains only to the variables that 
are being subjected to the random increments. In the rejec­
tion test they are the variables being checked for having zero 
sensitivity coefficients, while in the "statistical screening" 
procedure they are all the variables that one believes can be 
important, namely, those having large sensitivity coeffi­
cients. Thus, ifS·a =1= 0, the rejection test runs are not comple­
tely wasted. These runs, in some cases, can be used for the 
screening procedure on the variable tested. 

In the presented test, we required orthogonality 
between the vectors Sand aj . In a practical application, one 
will always find S.aj = Ej , where IEj I is a small but finite 
quantity. We believe that setting Ej = 0 when IEj I is below 
some small threshold value will not invalidate the test. So far 
we have not succeeded in supporting this assertion by a rig­
orous mathematical proof. This question is a subject for 
further investigations. 

It may be interesting to note that the problem of the 
maximum combinations of a vector underlying the rejection 
test has interpretations in geometry and the theory of games. 
In the geometrical aspect, the problem can be interpreted as 
finding a vector (with nonzero elements) in n-dimensional 
Euclidean space; that is, perpendicular to the maximum 
number of edges of an n-dimensional cube centered at the 
origin. The edges of an n-dimensional cube centered at the 
origin are of the form a = (a l ,a2 , ... ,an ), a j = ± 1. We want 
to find a vector S = (SI,s2,,,,,sn)' Sj =1=0, such that S·a = 0 for 
the maximum number of edges. The theorems discussed in 
this paper solve this problem. Thus, the maximum number 
of cube edges that will be orthogonal to the vector is given by 
Eqs. (29a) and (29c). The form of such a vector will be 
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S = (g, g, ... , g) for n even, 

S = (2g, g, ... , g) for n odd 

(this is not necessarily the only possibility). For example, in a 
three-dimensional space, the vector S = (2,1,1) is perpendi­
cularto(l, - 1, - 1) - (1,1,1). This is the maximum number 
of cube edges that can be perpendicular to any vector with 
nonzero components. 

In the theory of strategic games, we may consider the 
following game. A set of n-steps (SI"",Sn) is chosen. N 
"scouts" start from the origin and follow the n steps in two 
directions; (b) steps must be followed in the order that they 
appear in the sequence; (c) no two "scouts" are allowd to 
follow exactly the same route; (d) all scouts must finish their 
route at a predetermined point of distance g from the origin. 
The problem is now how to choose the set of steps such that 
the number of "scouts," N, is maximum. The solution of this 
problem is given in Eqs. (29b) and (29d). 
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APPENDIX A: A SIMPLE EXAMPLE FOR THE 
REJECTION TEST 

Consider a die that can be either normal die or a loaded 
die. We thus have 

A I = (normal die J (AI) 

or 

Ao = (loaded die J . (A2) 

Let us assume that 

P (A III P (Ao)';;;Y = 103
, (A3) 

thus assuming that the chances of a fair play are large. 
Let us choose a rejection criterion.B = 10-5

, and 
E = experiment: N throws of the die. CN-in all throws, face 
up shows six dots. (A4) 

Thus we have 

P(CNIAo) = 1, 

P(CNIA I ) = (it. 
Demand 

P(A I ICN ),;;; 10- 5
• 

Thus 

(!)N X I03 ';;;1O- 5 , N>IO. 

(A5) 

(A6) 

Thus, throw the die 11 times. If C II occurs, reject A I' 
Hence decide the die is loaded. 

APPENDIX B: THE INPUT PARAMETER DATA FOR THE 
PROBLEM 

This appendix includes all input parameters used in the 
problem design. The parameters are related to material 
properties, initial values, and modeling parameters. 
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All temperatures are given in OF, distances in ft, conduc­
tivities in Btu/yr ft OF, densities in Ib/ft3, heat capacities in 
Btullb OF, and geothermal flux in Btu/yr ft2: 

(1) concrete conductivity 4380, 
(2) concrete density 125, 
(3) concrete Cp 0.21, 
(4) soil conductivity 8760, 
(5) soil density 120, 
(6) soil Cp 0.2, 
(7) salt density 165, 
(8) salt Cp 0.2, 
(9) earth surface temperature 60, 

(10) geothermal flux 140, 
(11) radiative coefficient 4.886 X 10-6 

(Note: Stefan-Boltzman constant is multiplied by the 
Radiation shape factor.) 

Salt conductivity 

(12) 30900 
(13) 25 400 
(14) 21 300 
(15) 18200 
(16) 15 800 
(17) 14000 
(18) 12 600 
(19) 11 700 
(20) 10 500 

Initial temperature 

Temperature 

32 
122 
212 
302 
392 
482 
572 
662 
752 

Depth (ft) 

(21) 60 0 
(22) 63.20 200 
(23) 66.39 400 
(24) 69.59 600 
(25) 72.78 800 
(26) 73.77 1000 
(27) 75.01 1250 
(28) 76.25 1500 
(29) 77.49 1750 
(30) 78.74 2000 
(31) 79.99 2250 
(32) 81.24 2500 
(33) 82.50 2750 
(34) 83.76 3000 
(35) 85.02 3250 
(36) 86.29 3500 
(37) 87.56 3750 
(38) 88.83 4000 
(39) 90.11 4250 
(40) 91.39 4500 
(41) 92.68 4750 
(42) 93.97 5000 
(43) distance between spent fuel assemblies 
(44) canister radius 
(45) repository depth 
(46) overburden thickness 
(47) room width 
(48) concrete thickness 
(49) room thickness 

40, 
0.6667, 

5000, 
800, 

10, 
8, 

25. 
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It is shown that in the Hilbert space of a quantum field theory with a nonzero mass gap there exists 
a dense set of vectors, each entire analytic for the energy-momentum operators, that are cyclic for 
the polynomial algebra 5"'(JRd) [and for the local polynomial algebras 5"'(&), for any nonempty 
& ~ JRd]. It is proven that for every vector <I> from this dense set there exists an element 
Q E 5"'(JRd) such that Q<P = fl, where fl is the vacuum, and Qfl = 0. A similar, stronger result is 
proven for free field theories (including mass zero). 

PACS numbers: l1.l0.Cd 

I. INTRODUCTION 

As part of a program I intending to prove, for a large 
class of quantum field theories, that symmetric field opera­
tors are essentially self-adjoint on their usual domain of de­
finition and that their unique self-adjoint extensions are lo­
cal, this paper proves a technical result, which we believe to 
be of independent interest in its own right, which is em­
ployed crucially in that endeavor. We first indicate what this 
technical result is and point out some of its immediate conse­
quences. There shall surely be other applications for this 
result besides the one being developed in Ref. 1. 

If .9(Rd
) denotes the polynomial algebra of smeared 

field operators, we shall call P E .9 (JRd) vacuum reducible if 
there exists a Q E 9(JRd) such that Qfl = ° and QPfl = fl, 
where fl signifies the vacuum vector (assumed unique). Q 
will be called an annihilator of P. We shall show that in a 
quantum field theory with a nonzero mass gap there are 
enough vacuum reducible P E .9 (JRd) so that the set 

W = IPfl IPE 9(JRd) is vacuum reducibleJ 

is dense in the Hilbert space !/r' w associated with the quan­
tum field. It then follows easily that every vector in W is 
cyclic for 9(JRd) (sincefl is). Furthermore, every vector in W 
that is an analytic vector for the energy (and we show that 
this subset is dense) is also cyclic for the local polynomial 
algebra 9(&), for any nonempty, open & ~ JRd. 

We recall that it is well known that every vector in a 
Hilbert space !/r' carrying an irreducible *-algebra d of 
bounded operators is cyclic for d. Indeed, the cyclicity of 
every vector for .sz! is necessary and sufficient for the irredu­
cibility of .2/. The same, however, cannot be said for a *­
algebra 9 of unbounded operators, viewed as being defined 
on a common, dense, invariant, linear domain D. To make 
this clear, let us define the commutant 9' of the algebra 9 
as all those bounded operators B for which 

«(/J, BPI{!) = (P *<1>, BI{!), 'tj <1>, I{! ED, 'tj P E 9 . 

This definition provides the largest commutant .9' (and 9' 
is not necessarily an algebra). One has taken to calling such 
algebras .9 irreducible2

-
s if 9' is composed solely of multi­

ples of the identity operator I on!/r', in analogy to one of the 
many equivalent formulations of irreducibility for algebras 
of bounded operators. But, if JI C D is a linear manifold 
that reduces 9, i.e., 9 JI C JI, it is not true in general that 

the self-adjoint projection E // onto the closure of JI in!/r' is 
in .9'. Thus, even if 9 is "irreducible," there could be a 
proper reducing subspace for 9 in!/r'. Concretely, there are 
examples of irreducible 9 for which "many" vectors <I> E D 
are not cyclic. (For further details on these matters, see Refs. 
5 and 4.) 

Therefore, although we are concerned here only with 
irreducible algebras .9, it is not a triviality in general to 
produce a dense set of cyclic vectors for 9, much less show 
they are generated by vacuum reducible operators, which is 
what we shall actually need in Ref. I. This will be possible for 
the particular algebras handled here either because of the 
straightforward structure of the algebra of the canonical 
commutation relations in Fock space or because of the spe­
cial information provided by the mathematical structure of 
the general theory of relativistic quantum fields. In fact, as 
we show in Sec. II, it is easy to demonstrate in the former 
case, for the examples of quantum mechanics with arbitrar­
ily many degrees of freedom and of free (boson) quantum 
field theories with mass m).O, that every operator in 9 is 
vacuum reducible. But the proof for interacting fields is not 
quite so simple. In Sec. III we introduce the definitions, no­
tation, and some previously known results that we need to 
prove, for a real, scalar quantum field theory satisfying 
Wightman's axioms generalized to localizable ultradistribu­
tions and having a nonzero mass gap, that the set W defined 
above is dense. An exact statement of the main result is given 
in Theorem 4.1. The vectors of W that we explicitly con­
struct in Sec. V are all entire analytic for the energy-momen­
tum operator, enabling us to prove (in Sec. IV) the conse­
quences mentioned above. The proof of Theorem 4.1 is given 
in Sec. V. 

We comment that the requirement of a nonzero mass 
gap is an artifice of the proof in Sec. V (it is not necessary for 
free fields in the proof in Sec. II) and that, although we re­
strict outselves to giving details only for the real scalar field, 
a similar argument can be applied to arbitrary spin fields. 

II. QUANTUM MECHANICS AND FREE FIELDS 

The ~m of this chapter is to prove the existence of a 
dense set ~ of cyclic vectors for *-algebras of unbounded 
operators with particularly simple algebraic relations-the 
polynomial algebra of position and momentum operators in 
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quantum mechanics with arbitrarily many degrees of free­
dom and the polynomial algebra of (generalized) free scalar 
quantum fields-by showing that each operator P in these 
algebras is vacuum reducible, in the sense defined in the In­
troduction. We shall also show that Wick monomials of free 
scalar fields are vacuum reducible. The generalization to free 
quantum fields with other spins will be clear after one has 
seen the proof in the scalar case. 

We begin with the simplest algebra-that of the polyno­
mial algebra of the position and momentum operators for 
one degree of freedom. Let A and A t be the maps of Y(R), 
the Schwartz space of tempered test functions on R, into 
itself given by 

A=2~1/2(X+ d~)' At=2~1/2(X- !), 
so that 

X=2~1/2(A+At) and i~=i2~1/2(A-At). (2.1) 
dx 

They are to be understood as linear operators on the dense 
domain Y(R) in the Hilbert space L 2(R). Let 

,po = 1T~1/4e~x2!2 and ,pn = (n!)~1/2(A t)n,po, n EN, 
(2.2) 

be the Hermite functions, which form an orthonormal basis 
for L2(R). One has 

AA t -A tA = [A,A t] =1 (2.3) 

on Y(R), where I is the identity operator on L 2(R), and 

A t,pn = fil+T,pn + I' A,pn = jii,pn ~ I' n;;d, (2.4) 

with A,po = O. For obvious reasons A is called the annihila­
tion operator and A t the creation operator. The symmetric 
operator N = A tA satisfies N,pn = n,pn and is essentially 
self-adjoint on 

D = span { (A t)n,po I nEN , 
which is, by (2.2), dense in L2(R). By (2.1), ,po is a cyclic vector 
for 9, the algebra of all polynomials with complex coeffi­
cients of the operators x and id / dx. It is well known that 9 
is irreducible in L 2(R) in the sense defined in the Introduction 
(see, e.g., Ref. 5). (2.1) also implies that any PIx, id /dx) E 9 
can be written as a polynomial Q (A, A t) in A and At, which 
in turn, using (2.3), can be rewritten as a sum of normal­
ordered monomials inA andA t, i.e., all creation operators in 
a summand stand to the left of all annihilation operators. 
Since A,po = 0, we have 

for some ! Cn J~~h C C, whered (P) denotes the degree of P. 
Therefore, using (2.3) to commute the annihilation operators 
through to the vacuum ,po, if m is the largest integer for 
whichcm #0, 

A mp(x, i ! ),po = m!cm,po' 

since 
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and 

A n(A tt,po = 0 , 

if n > m. Thus, we have 
Proposition 2.1: Given any nonzero vector f/J in the 

dense set ";;;,po = D, there exists aCE C and an n E N so that 

cA "f/J = c2 - n!2( X + d~ r f/J = ,po . 

Therefore, any such f/J is cyclic for 9 in L2(R). 

It is clear how one may generalize this simple argument to 
any number of degrees of freedom. 

We next show that such straightforward considerations 
yield similar results for free field theories and their Wick­
ordered monomials. For the reader's benefit we summarize 
those properties of the free scalar field of mass m >0 in d 
space~time dimensions that will be of relevance. For further 
details see, e.g., Ref. 6. [We remark that for the special case 
d = 2, m = 0, one must use a smaller test function space 
than Y(R2)-see Ref. 7-but that otherwise the arguments 
are the same.] 

If Y n denotes the space of symmetric L2 functions on 
R"(d ~ II and Yo = C, let 

00 

Y = Ell Y nand fl = 1 E Yo . 
n=O 

Let Sn be the symmetrizing projection of L 2(R
n

(d - II) onto 
Y nand D be the algebraic span in Y of fl and vectors of the 
formf(x l , ••• , x n) = Sn(f(xd· . ·f(xn))· If a*(p) and 
alp) (p E Rd - I) are the momentum space creation and anni­
hilation "operators," and defining for any fEY R (Rd ~ I) 
[real-valued functions Y(Rd - I)] 

b *(f) = f a*( - p)J(p) dd~ Ip 

and 

b (f) = f a(p)J(p) dd-Ip , 

where 

J(p) = (21T) ~ (d -1)/2 f e ~ ip'x fIx) d d ~ IX , 

we have, for any J, g E Y R (Rd ~ I), b *(f)D C D, 
b (f)D C D, and 

[b (f), b *( g)] = (J, g) L2(Rd-'/' [b (f), b (g)] = 0, 
(2.5) 

on D (I is the identity operator on Y). Furthermore, for any 
fEDnYn, 

(b *( g)f)(xl"",xn + I) 

= (n + 1)1/2Sn + I [g(xn + I )f(xl, ... ,xn)] , (2.6a) 

(b (g)f)(xI"",xn _ I ) = n I /2 f g(Xn )f(xl, ... ,xn ) d d ~ IXn , 

(2.6b) 

and 

b ( g)fl = 0, 'if g E Y R (Rd 
- I) . 

D is thus the algebraic span of vectors b *(fl) ... b *(fn)fl, 
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n EN, !.t; J 7 ~ ICY R (Rd), and 

b*(g): o7n nD-07n+' nD, 

b(g): o7n nD-07n~' nD. 

If w = ( - L1 + m 2)1I2, where L1 is the Laplacian in d - 1 
dimensions, then the time-zero field <Po(x) and its canonical 
conjugate l7o(x) are given by 

<Po(f) = 2 ~ 112(b *(w ~ 112/) + b (w ~ 1/21)) (2.7) 

and 

l7o(f) = i[Ho, <Po(f)] = i2~ 112(b *(w '/2/) - b (wl/'l)) , 
(2.8) 

for any IE Y R(Rd~ I), where Ho is the free Hamiltonian. 
The field at other times is given by 

( ) 
iHa' () ~ iHa' <P X, t = e <Po x e , 

so that 

<p(x, t) = 2~1/2(217)~d/2 J e~ip.x 
X (eiwIPI'a*(p) + e~iWIPI'a( _ p))W(p)~1/2 dd~ Ip, 

(2.9) 

where w(p) = (pop + m2)112, and 

l7(X, t) = i2~1/2(217)~dI2 J e~ip.x 
X (eiWIPI'a*(p) - e ~ iwlpl'a( _ p))w(p)1I2 d d ~ Ip . 

We note that (2.5) and (2.6) imply 

b (f) = 2~'/2(<Po(w'/2/) + il7o(w~'/2/)), (2.10) 

so that b (I) E 9 o(lRd), the polynomial algebra generated by 
! <Pol g), 17 o( g) Ig E Y R (Rd) J, i.e., the time-zero polynomial 
algebra of the d space-time dimensional free field, which is 
irreducible in the sense defined in the introduction. 

Let Pn be the projection in 07 onto o7n • Given any 
nEN, !.t;J7~, C Y(Rd

) such that 

let n ,;;>m ,;;>0 be the largest integer for which 
n 

Pm II <p (.t;)fl =10. 
i= 1 

Since D is dense in 07, we can find a collection 
!hiJ;:, C YR(Rd~')sothat 

(2.11) 

[recall o7nlo7 m for n=lm, and II7'~ I b *(hi)fl E 07 m]. We 
assert 

I n 

Po II b (hi) II <p (.t;)fl 
i=m i= 1 

I n 

= II b(hi ) II <p(.t;)fl =10. (2.12) 
. i= 1 

This follows since 
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I n 

Po II b (hi) II <p (.t;)fl 
i=m i= I 

=p{It b(hi)][i~O Pi ][1\ <P(.t;)]fl 

=p{It b(hi)]Pm[i~\ <P(.t;)]fl 

= [Jt b (hi)]P m [ill <P (.t;)]fl 

= [iIt b (hi)] ito Pi [i~\ <P (.t;)]fl 

m n 

= II b(hi ) II <p(.t;)fl, 
i= 1 i= 1 

(2.13) 

where we have used (2.5), (2.6), and (2.9), along with the fact 
that 

ito Pi [iiI, <p (.t;)]fl = iiI, <p (.t;)fl . 

(2.12) then follows from (2.13) and (2.11). Therefore, the 
proof of the following proposition is clear. 

Proposition 2.2: Given any nonzero vector (/> of the form 

jtl (iiI <P(fij))fl' lEN, !njJ}~1 eN, 

! .t;j J7)~ I,j ~ I C Y(Rd) , 

or of the form 

jtl (iiI <p g(.t;j))fl, lEN,! nj Jj~ leN, 

!.t;jJ7~',j~' c Y(Rd~I), 
where <p g(/) can stand for either <Po(/) or 170(/), there exists 
an operator Q E 9 O(Rd) such that Q(/> = fl and Qfl = 0, 
Therefore, every such vector is cyclic for 9 o(Rd) in o7. 

Proof One chooses m to be the largest integer such that 
Pm (/> =10, and argues as before. 

Remark: The set of such vectors is dense in o7. 
To close this section, we wish to extend this result to 

vectors obtained from the vacuum by products of Wick-or­
dered free scalar fields. Given any 
nEN, !.t;J7~, C Y(Rd),wedefine 

: <p (.t;) ... <P (fn): fl = Pn<P (iJ) ... <P (fn)fl , 

so that 

: <P (fd ... <P (fn): fl =ll {2 ~ I 12(217) ~ d 12 J e ~ ip'xeiw(pl' 
J~I 

Xa*(p)w(p)-1/2 dd ~ Ip .t;(x, t) d d ~ 'xdt}fl . 

As wehavejustseen, for any set! hi J7~ ICY R (Rd~ I) such 
that 

(iiI, b*(hi)fl, : iiI, <p(.t;):fl )=10, 

one has 
n n 

Po II b (hi): II <P (.t;):fl 
i= 1 i= 1 

I n 

= II b (hi): II <p(.t;) : fl =10. (2.14) 
i=n i= 1 
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The nth Wick power of Q?(x) can be defined formally by 

(see Ref. 6 for a rigorous definition) and gives a field satisfy­
ing the Wightman axioms.6 Moreover, for any 
n E I'll, g E Y(Rd

), there exists a sequence of vectors 

I: Q? (ff) ... Q? (f~) : n J NEN 

converging strongly in 07 to : Q? n : (g)n and such that 
! Q : n7 = I Q? (!~) : n J is strongly Cauchy for any polyno­
mial Q in the free field (see Ref. 8). Therefore, : Q? n :( g)n is in 
the domain of the closure ofQ ~ D, and, in particular, in the 
domain of the closure of [n: = n b (hi)] ~ D, for any 
nEN, Ihi J7=1 c YR(Rd

-
I
). 

There exists a set I hi J 7= ICY R (Rd 
- I) such that 

(iiIl b *(hi)n, : Q? n: (g)n )=1=0, (2.15) 

so that there exists an No E I'll for which 

( iiIl b *(h i )n, : Q? (ff) ... Q? (f~) : n ) =1=0, 'rJ N~No . 
(2.16) 

(2.14) then implies 
I n 

II b (h;) : II Q? (f~) : n = cNn , 
i= n i= 1 

where C N is equal to the scalar product in (2.16). Using the 
already mentioned strong convergence, it follows that 

(2.17) 

where Coo is equal to the scalar product in (2.15) and the bar 
above the operator in (2.17) designates the closure on the 
domain D. We have therefore proven the following result. 

Proposition 2.3: Given any nonzero vector <P of the form 
: Q? n : ( g)n, n EN, g E Y (Rd

), there exists a closable opera­
tor Q E 9 O(Rd) such that Q<P = nand Qn = 0, where 

Q = [Q ~ D]. Thus, every such vector is cyclic for 
9 o(Rd), in 07, where 9 o(Rd) contains the appropriate 
closed operator. 

Remarks: (1) By using expansion formulas in Appendix 
A of Ref. 8 and the arguments above, it is easy to extend 
Proposition 2.3 sums of products of Wick powers offree 
fields applied to the vacuum. 

(2) All Arguments given above can be applied immedi­
ately to generalized free fields to obtain for them analogous 
results. 

III. BASIC ASSUMPTIONS AND NOTATION: GENERAL 
THEORY OF QUANTIZED FIELDS 

In the preceding chapter we have shown that a few spe­
cial, irreducible *-algebras of unbounded operators have a 
dense set of cyclic vectors and that the operators in these 
algebras are vacuum reducible. The proofs we have given 
depend on the especially straightforward algebra of the ca­
nonical commutation relations in Fock space. In the remain­
der of this paper we wish to prove similar results for a large 
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class of irreducible *-algebras of unbounded operators, aris­
ing out of relativistic quantum field theory, whose algebraic 
relations are far from being simple, but which have an in­
volved and beautiful structure that we can employ to obtain 
the desired results. The purpose of this chapter is to establish 
notation and to recall those results of axiomatic quantum 
field theory that we shall have particular use for. We shall 
admit quantum fields that are more singular than the tem­
pered distributions of the standard Wightman theory. 

We recall here the axioms of a strictly localizable quan­
tum field theory, although the arguments in Sec. V, with one 
exception, would apply to any scalar field theory that can be 
defined on a nuclear test function space containing test func­
tions with compact support in momentum space. In that case 
the locality condition given below is then replaced by an 
appropriate generalization (see Refs. 9 and 10) and the cru­
cial asymptotic decay property of the truncated vacuum ex­
pectation values (Theorem 3.6) is known to hold again. 9

•
10 

However, the proof of the density of the resulting vacuum 
reducible vectors that we give does use strict localizability; 
so aside from these remarks, we restrict our attention to test 
function spaces with a dense set of elements with compact 
support in configuration space, i.e., strictly localizable fields. 
We take the trouble to handle this problem in this generality 
because there are concrete field models with fields that are 
not tempered distributions (see Refs. 11-13) and there is rea­
son to believe that other physically interesting models will 
be able to be constructed, if at all, only in this framework (see 
references in Refs. 12 and 10). 

The most general setting for strictly localizable fields 
would seem to be the theory of ultra distributions (see Refs. 
14 and 15), which subsumes as special cases both Jaffe 
spaces II and the S-type spaces of Gel'fand and Shilov. 16 We 
recall the necessary definitions and briefly indicate the sa­
lient properties. Let w:[O, 00) -+ R be a function satisfying 
the following conditions: 

(a) exp[w(x2
)] is a real entire function on Rd (x2 

= ~1~oIX~); 
(b) w(x + y)<w(x) + w( y), 'rJ x, y E [0,00), 
(c) fa [w(t 2)1(1 + t 2)] dt < 00; 
(d) w(x2)~ln(1 + IxI 2

), 'rJ x E Rd
, 

(e) 2W(X2)<w(Ax2) + C, 'rJ x E Rd, 

for some constants A and C. Condition (c), known as Carle­
man's criterion, assures that there will be sufficiently many 
local test functions in the space; condition (d) entails that the 
test functions are in Y(Rd

), and condition (e) will give the 
nuclearity of the space. (This condition can be somewhat 
weakened-see Ref. 17). In the general theory ofultradistri­
butions, condition (e) is omitted; we, however, shall need the 
nuclearity. Following Ref. 17, we call any such function w a 
Jaffe indicatrix. 

Given a Jaffe indicatrix w, we define .~,,,(Rd) to be the 
space of all infinitely differentiable functions! on Rd such 
that 

Pa,A (f) - II !II~~~I - supl eA<u
1 P'IID aft p)1 J < 00 , 

pER
d 

for each multiindex a and each constant A > 0. The topology 
in j(,,, is then defined canonically in terms of these semin-
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orms. The space C(j' w (JRd) of inverse Fourier transforms of 
1 w' i.e., C(j' w = y-I(~~,V) has a canonical topology deter­
mined by the semi norms 

1Ta.).(f) Ilfll~J =su~!e).wIP'IIDa!(p)IJ, 
pER 

where 

!(p) = (Yf)(p) = (21T)-d12 J e-ikPf(x)ddx . (3.1) 

Y : C(j' w (JRd) - 1 w (JRd) is a continuous isomorphism in 
these topologies. If 0 C JRd is compact and !if w (0) is the set 
of all LI-functions with support in 0 such that the semin­
orms 

IIfll). = J If(p)l~w'P'1 ddp 

are finite, for every A > 0, then !if w (0) is dense in !if (0) 
(Schwartz's test function space of COO-functions with sup­
port in 0). And defining !if ",(JRd) as the inductive limit of 
!if",(On),On tJRd,On C On+I'V n,thesameistruefor 
fiJ ",(JRd) C !if(JRd). These assertions follow from condition 
(c). The elements of the dual space !if ~ of !if '" are called 
ultradistributions. C(j' ~ is a space of ultradistributions and 
1;v is a distribution space, i.e., can be viewed as a subspace 
of !if'. IS We define %",(JRd) = Y-I(!if ",(JRd)). 

For easy reference in this paper and in Ref. 1, we collect 
here some known results in a series of lemmas. 

Lemma 3.1 14
•
18

; The spaces 1 wand C(j' ware topologi­
cal algebras under pointwise multiplication and convolu­
tion. 

Lemma 3.2 14. /~. !if w is dense in 1 wand C(j'tv' 
Lemma 3.3/8

; The translation operator Ta' a E JRd: 

(Ta f)(x) = fix - a) 

and the multiplication by exp(ix·a) are continuous operators 
on 1 wand C(j' w' 

Lemma 3.415.1~. The spaces 1 w' C(j' w' and fiJ ware nu­
clear. 

Lemma 3.515
; Corresponding to every open covering in 

JRd, there exists a partition of unity in fiJ w (JRd) [or 1 w(JRd
) or 

C(j' w(JRd), as the case may be]. 
The Wightman axioms (Hilbert space structure, covar­

iance of the fields under the Poincare group, the spectrum 
condition, and locality) can then be formulated for a general 
spin quantum field theory as usual (see Refs. 3 and 19), with 
the configuration space test functions Y(JRd) replaced by 
C(j' w (JRd). II Thus, for any vectors $, 1/1 E Dw, the invariant 
common domain of the fields q:;(f), f E C(j' w (JRd ), in the Hil­
bert space JY w associated with the fields, the form 
< $, q:;(f)I/I) is continuous infin the topology of C(j',V' i.e., 
< $, q:;(.) 1/1 ) E C(j' '" (JRd),. We shall refer to this axiom as the 
continuity axiom or Wightman continuity. It is due to 
Lemma 3.2, i.e., due to the fact that in configuration space 
there are enough test functions of compact support, that the 
locality property does not need to be generalized. Jaffe (un­
published) and Constantinescu and Thalheimer l7

•
18 (see also 

Refs. 9 and 10 for even smaller test function spaces) have 
shown that all the standard tools and results of axiomatic 
quantum field theory (including analytic continuation of 

2813 J. Math. Phys., Vol. 24, No. 12, December 1983 

Wightman functions and edge-of-the-wedge theorems that 
we shall use many times in the following) are valid for such 
strictly localizable fields. 

We shaH denote with .9 (JRd) the *-algebra (defined on 
Dw) of polynomials generated by ! q:;(f) If E C(j' (JRd) J (we 
shall henceforth suppress the index lV, since all formulations 
and results in the sequel will be valid for any Jaffe indicatrix), 
with .9 c (JRd) that generated by the operators 
! q:; (f)1 fE %(JRd) J, and with .9 loc (JRd) that generated by 
[ q:;( f) I f E fiJ (JRd) J. If 0 ~ JRd, .9 (0) will designate the *­
algebra of polynomials generated by [q:; (f)lfE !if(O) J. In­
cluded in the Wightman axioms is the assumption that the 
vacuum fl is cyclic for .9(JRd) in JY w, and because %(JRd) 
and fiJ(JRd) are dense in C(j'(JRd) [using Lemma 3.2 and 
Y : C(j' (JRd) _ 1(JRd) a continuous isomorphism], the con­
tinuity axiom implies that .9 c (JRd)fl and .9 loc (JRd)fl are 
also dense in JY w . I t is well known that the uniqueness of the 
vacuum, which also is assumed in the Wightman axioms, 
entails the irreducibility of .9 (JRd) [thus of.9 c(JRd

) and 
.9 loc (JRd)] in the sense given in the Introduction. 3 We shall 
also be assuming below the existence of a positive mass gap, 
i.e., the existence of a lowest nonzero eigenvalue for the mass 
operator P . P = (P 0)2 - "2.t: l (P k f (where 
P = (P 0, pi, ... , P d - I) is the generator of the space-time 
translations on JY w ). 

Let us recall the connection between the Wightman 
functions 

Wn (XI"'" x n) = <fl, q:; (x I) ••. q:; (xn)fl ) 

and the truncated vacuum expectation values (TVEV's) 
W~(x I"'" x n)· The TVEV's are defined recursively by 

part. 

... W:(x/ , ... ,x/ ), 
s ~,l s.rs 

(3.2) 

where the sum on the right-hand side runs over all partitions 
of the indices I, ... , n, and in each subset Ik,1 , ... , Ik,r" the 
indices are taken in natural order. Since the Wightman func­
tions and TVEV's are translation-invariant, one may define 
the difference value Wightman functions and TVEV's: 

JrinTI(SI"'" Sn) = W~T~ I (xo,"" x n), Sk == X k _ I - X k • 

(3.3) 

The Fourier transforms of the difference variable Wightman 
functions satisfy 

where supp denotes support and V + the closure in JRd (with 
Minkowski metric) of [ p E JRd I p . p,>O I, and, since in the 
TVEV the vacuum contribution is symmetrically subtracted 
out, if there is a mass gap m > 0, 

SUPP~(ql, ... ,qn)C [qkEV,:, k=I, ... ,nj,19 

where V,: is the closure of [p E JRd I p. p,>m2j and 
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n 

XJP1nT)(~I""'~n) II dd~i' (3.4) 
i= 1 

It might be worthwhile pointing out for later use that with 
our conventions (3.1), (3.3), and (3.4), 

Wn (fl,···,jn) = f 'lrn - I (PI"'" Pn - I) 

n-I 
X]I(pd]2(P2 - PI)" ']n( - Pn-I) II ddPi . (3.5) 

i=I 

We shall have need below of the following theorem 
about the asymptotic behavior of (generalized) TVEV's on 
spacelike hyperplanes. Let 

QdO) = f fdx l,···, xnJp (XI)" . cP (xnJ ji
l 

ddXj , 

wherefk E ~(Rdnk), k = 1, ... , N. Let Qdxk) be the translate 
of QdO), i.e., 

Qdx
k

) = eiP,x'QdO)e - iP.x\ X
k 

= (O,x
k

) E Rd . 

We define the generalized TVEV 

F(x) = (Qdx l)··· QN(XN)T 

in analogy to (3.2) and let 

p= max IXk -xk'l· k.k' ~ I, ... ,N 

Then using ideas dating back to Ruelle,2 the following 
theorem can be proven. 

Theorem 3.69,1°: Let cp(x) be a real scalar quantum field 
theory satisfying the axiom structure discussed above and 
having a nonzero mass gap. Then for any set [Qk (0) ) ~ ~ I 

defined as above, IF (x) I converges to zero faster than any 
power of p - I as p ~ 00. 

Remark: Although the proofs in Refs. 9 and 10 are car­
ried out in detail only for the TVEV's defined in (3.2), it is 
easy to apply the argument to the generalized TVEV's we 
have defined. 

IV. THE PRIMARY RESULT AND ITS IMMEDIATE 
CONSEQUENCES 

In this section we state the central technical result of 
this paper, the proof of which is presented in the following 
section, and demonstrate its immediate consequences. As 
previously mentioned, the main theorem, Theorem 4.1, will 
have other applications in our study of the essential self­
adjointness of quantum field operators. And there will surely 
be other uses for the results of this section. 

In the following, a "quantum field" shall be understood 
to mean one satisfying the axioms discussed in the previous 
section. 

Theorem 4.1: Let cp(x) be a real scalar quantum field 
with mass gap m > O. Then there exists a set if of vectors, 
dense in the Hilbert space JY w associated with the field, of 
the form 
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NEN, [nj)f~1 eN, [fijI c JY(Rd) , 

such that there exists, for any such nonzero vector of this 
form, an njo EN and a set [ gi )7~ I C JY(Rd) so that the 
following equations are satisfied: 

njo nlo 

(i) II cp (gi) II cp (fkjo)n = n, 
i~ I k~ I 

and 

"iQ nj 

(iii) II cp (gi) II cp (fkj)n = 0, V j# jo· 
i~ I k~ I 

Remarks: (1) The set if is defined in the next section 
[see, in particular, (5.15)). 

(2) The CPt gi)'S clearly act in an analogous manner to the 
annihilation operators in Sec. II, and for this reason we have 
taken to calling them annihilators. 

(3) Since the test functions in the definition of the vec­
tors in if have Fourier transforms with compact support, if 
is a subset of all finite energy-momentum vectors in JY w . 

Therefore, vectors in if are entire analytic vectors for the 
energy-momentum operators-that is to say, given any 
et>Eif, 

00 lIP net> II n I t <00, (4.1) 
n ~ I n! 

for all tEe, where P represents any of the energy-momen­
tum operators Pl'. 

An immediate consequence of Theorem 4.1 is made 
clear by the following remark. Given any vector 

et> = Lf~ I [n7~ I cp (fij) ] n E if, one has 

9 c et> ::J 9 c jil cp (gi) jtl (fil cp (.t;j ))n = 9 en 

(4.2) 

[ 9 e = 9 e (Rd
) ], which is dense in JY w' Therefore, we 

have: 
Corollary 4.2: Let cp(x) be a real scalar quantum field 

with mass gap m > O. There exists a dense set if of vectors, 
each of whose elements is cyclic for 9 e (Rd

), 9 (Rd
), and 

9 1oc (Rd
). 

Proof (4.2) yields the claim for 9 c' and since, by 
Wightman continuity, 

9 c(Rd)et> = 9(Rd)et> = 9 Ioc (Rd)et> , V et>EDw 

(see Sec. III), the other cases follow at once. 
Since, as already noted, the vectors in if are entire ana­

lytic for the energy, one may adapt a standard argument to 
obtain: 

Corollary 4.3: Let ({J (x) be a real scalar quantum field 
with mass gap m > O. There exists a dense set if of vectors, 
each of whose elements is cyclic and separating for 9(&), 
given any open & C Rd such that &', the causal comple­
ment of &, is not empty. 

Proof As the argument for the case et> = n is well 
known (see Ref. 3), we shall only sketch the proof (see also 
Ref. 20 for the case of bounded algebras). Given such an & 
and et> E if, assume there exists a Ij/ E JY w such that 
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(CP, PcP > = 0, 'tI PE .9(&). 

Let & I be a nonempty open subset of & such that 
& I + ff c &, where Jf,/" is a neighborhood of the origin in 
Rd. Then we have (we continue to suppress w) 

( cp,ft eiajP q:; (hj)e - iajP cP ) = ° , 
J~I 

Since cP is entire analytic for p,." f-l = 0, ... , d - 1, we may 
employ the spectrum condition to analytically continue (4.3) 
to 

(4.4) 

wherezj = aL + ibj , laj I;~ I C ff, bl E V +, 

bj + I - bj E V + ,j = 1, ... , n. There is no further restriction 
on bn since cP is an entire vector. But the analytic function 
(4.4) coincides in the specified domain of analyticity with the 
analytic function 

with domain5 = cj + ibj , ICj I;~ I C R, b l E V +, 

bj+ I - bj E V + ,j = 1, ... ,n. Since (4.4) vanishes in an open 
real neighborhood [by (4.3)], one may then conclude that 

( cp,ft eibj"P q:; (hj)e - ibj"P cP) = 0, 
J~l 

using the edge-of-the-wedge theorem in the form of 
Theorem 2.17 in Ref. 3. (For confirmation that the edge-of­
the-wedge theorem holds also for ultradistributions, see Ref. 
17, which uses Lemmas 3.2 and 3.4). Thus, if I & n 1 is a 
countable covering of Rd composed of translates of & I' 

(cp, itl Pn,cP) = 0, 'tI In;)7~ I C N, 'tI Pni E .9(& n)' 

(4.5) 

Since there is a partition of unity in 'G'(Rd) (Lemma 3.5) cor­
responding to each open covering Rd

, there exists a sequence 
IXn I: ~ I C ~(Rd) such that Xn E !»(& n), for each n, and 
~:~ IXn I =J, given any IE ~(Rd), where the convergence 
is in the topology of ~ (Rd

) (by Lemma 3.1, 
X n I E ~ (Rd

), 'tI n). Thus, by the linearity of q:; (I) on ~ (Rd
) 

and the strong continuity of"7 ~ I q:; (/;)cP in the topology of 
'G' (Rd

) (follows from Wightman continuity), (4.5) entails that 

which, with Corollary 4.2, completes the sketch of the 
proof. 

We note here that the same arguments may be applied 
to those cyclic vectors constructed in Sec. II for the free field 
that are entire analytic for the energy-momentum operators, 
to conclude that they are cyclic for the local polynomial alge­
bras, as well. 
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V. VACUUM REDUCIBLE OPERATORS IN QUANTUM 
FIELD THEORIES WITH MASS GAP 

The object of this chapter is to prove Theorem 4.1. It 
will be clear from the proof that we do not demonstrate the 
strongest possible result, even using only the relatively crude 
methods we have employed here. But it is not obvious that 
one would not already have passed the point of diminishing 
returns by squeezing out a few more operators with annihila­
tors. Nevertheless, it would be an interesting extension to 
show Theorem 4.1 to be true for all P E .9 c (Rd

) (we have 
results to this effect in the weak-coupling limit, and, as al­
ready seen, it is true for free field theories)-but see Ref. 21. 

We must begin by defining the special classes of test 
functions with which we shall be working. Let 

.if1(Rd) = I IE %(Rd)l/(p) = ° 9/( - p) = 01 
(we continue to suppress the Jaffe indicatrix w), and 

.ifz(Rd
) = I IE .if1(Rd)I(1 - Pn)q:; (f)fl #01 ' 

where P n is the projection in JY' w onto the one-dimensional 
subspace spanned by fl, and q:;(x) is a real scalar quantum 
field. Let Tr = I p E Rd 10.;;; p°.;;;rJ [p = (pO,pl , ... , pd - I)] 
and, for any IE %(Rd), 

rf=inflrlsupp/nV+ CTrJ· 

Given any IE .if2(Rd
), let 0f(x) be any element of .if1(Rd) 

whose Fourier transform 8f ( p) satisfies 

supp 8f (p) = I p E Rd 1- rf 
.;;; p"'.;;;rf , f-l = 0, ... , d - 1 J \ (supp/)O , 

where a set with a superscript ° signifies its interior. Then for 
any IE .if 2(Rd) and for any €»O, 

11q:; (f + €Of)flI1 2 
= 11q:; (f)flIIZ + €211q:; (Of)flI1 2 > ° 

and 

11(1 - Pn)q:; (f + €Of)flI1 2 

= 11(1 - Pn)q:; (f)flI1 2 + ell(1 - Pn)q:; (Of)flIl 2 >0, 

as is easily seen, since (supp 8f )0 n (supp/)O = 0. Further­
more, 

I(p) + €8f (p) =0 9 I( -p) + €8A -p) = 0. 
We define now the set 

&8(Rd) = Ih (x) E %(Rd)lh (x) =/(x) + €Of(x), 

I E .if 2(Rd), € > 0, Of defined as above J . 

One notes at once that every element of .if 2(Rd) can be arbi­
trarily well approximated [in the topology of 'G' (Rd

)] by 
functions in &8 (Rd

). 

The first step in the proof of Theorem 4.1 is to verify 
that it holds for vectors of the form q:;(f)fl, with/E &8(Rd

). 

Lemma 5.1: Let q:;(x) be a real scalar quantum field with 
mass gap m»O. Given any IE &8(Rd), there exists a family 

I g{j L""IO,m) C %(Rd
) such that 

(i) q:;( g{j)q:; (f)fl = fl 

and 

(ii) q:;( g{j)fl = ° , 
for each {j E (0, m), 
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Proof The hypothesis entails that (supp/)O 

nsupp~1 n V,: #0, sincesupp irl ~ [OJu V,: and 

° < 11(1 - Pn)1P (f)fl 112 
= (fl, IP (f*)1P (f)f1 ) - I (fl, IP (f)fl ) 12 

= (fl, IP (f*)1P (f)f1 ) T 

= r JrT(p)I/(-pWdp, Jp 2>m2 

using (3.2) and the support properties of JrT(p) mentioned 
in Sec. III. The fact thatf(p) = ° if and only iff( - p) = 0, 
V f E !!lJ (Rd

), completes the proof of the assertion. 

Let 

I'- E J(supp/) n JTrf n supp ~I , (5.1) 

where J applied to a set denotes its boundary. This intersec­
tion is nonempty, since ~1(P) is a Lorentz-invariant distri-

bution and because (supp/)O n supp ~I n V,: #0, 
V fE !!lJ(Rd). The rather curious set !!lJ(Rd) was chosen ex­
pressly so that one could be assured of finding such a I'- for 
eachf E !!lJ (Rd

) (but see the remark following this proof). Of 
course, for such functions one can find in general many such 
1'-, but for our purposes it does not matter which one one 
chooses. We henceforth presume that such a I'- has been cho­
sen for eachf E !!lJ (Rd

). 

Choose abE (0, m) and define g.s.1" E .5Y(Rd) by its 
Fourier transform: 

g.s.,,(p) = XO'I"(p)/( - p)*, 

where 1 >X.s.1" (p»O is a C ""-function that vanishes outside 
of BD( 1'-) = [p E Rd I I p - 1'-1 <;bJ. We have then (suppress­
ing the subscript 1'-), 

111P(g.s)flI1 2
= f ~1(p)(gt)-(P)g.s(-p)dp=O, 

since supp ~ I C V + . Thus, 

lP(g.s)fl = 0, 

for any b E (0, m). In addition, 

W2(g.s,J) = f ~l(p)g.s(p)/(-p)dp 
= f ~1(p)X.s'I"(p)lf(-pWdp>O, 

(5.2) 

since ~I(P»O and I'- satisfies (5.1). We may then normalize 
g.s by multiplying by a positive constant, which, of course, 
depends on b, so that, retaining the symbol g.s for the nor­
malized function, 

W2 ( g.s,J) = (fl, IP (g.s)1P (f)fl ) = 1 . (5.3) 

Defining 

F(p,q) =g(q - pli( - q) = X.s. I" (q - p)/(p - q)*/( - q), 

we note that for any q E V + ' 

(supp F( p, q)) n V,: = ¢, (5.4) 
p 

by construction. Let [hi J7~ I C 'G'(Rd). Equation (3.2) tells 
us that 
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Wn+ 2 (h l ,···, hn,g,J) = I W~( ... )W~J")'" W~( ... ), 
part. 

where the sum is over partitions of [h I"'" hn' g,J J, and in 
each term of the sum, the arguments of the TVEV's are the 
functions in the suitable elements of the given partition, or­
dered naturally. But (5.2) and (5.4) entail that the only non­
zero terms in this sum are subpartitions of the partition 
[h I"'" hn 1 [ g,J 1, and by (3.2) this resulting sum is equal to 

Wn(h l ,··· hn)W2( g,J) = Wn(h p ... , hn), (5.5) 

using (5.3). Therefore, given any rJ> = rr7 ~ lIP (hi )fl, 
[hiJ7~1 C 'G'(Rd), we have 

(rJ>, [IP (g)1P (f) - l]fl ) 
= (rJ>, IP (g)1P (f)fl) - (rJ>, fl) 
= Wn +2(h ~, ... , h f, g,J) - Wn(h ~, ... , h f) = 0, 

by (5.5). Since such vectors are total in JY w, 

IP( g.s.,,)1P (f)fl = fl , (5.6) 

for all go. I" as constructed. 
Remark: The freedom of choosing any bE (0, m) will be 

important below. 
Remark 5.2: In Lemma 5.1 we have restricted our at­

tention to test functions f E !!lJ (Rd
) for pedagogical reasons. 

We wish to point out that, in this special case of one field 
operator on the vacuum, more general test functions may be 
admitted. If for example, f E .5Y R (Rd

) such that 
(1 - Pn )¢ (f)fl #0, then/(p) = ° ifand only if/( - p) = ° 
and, as before, Lsupp}J° n supp '/r l n V,: #0. However, 
the supports off and 'lr I can be such that the intersection in 
(5.1) is empty. In that case, since lP(h )fl = 0 for any test func-

tion h such that supp h ( - p) n V,: = 0, one can find a 
test function hE .5Y(Rd) such that h (p) vanishes for all 
p E Rd for which pO <;0 [so that lP(h )fl = 0] and rJ + h is such 
that 

J(supp(/ + h)) n JTr,+ h n supp ~I #0. 

Then one may carry through the construction for the test 
functionf + h to find agE .5Y(Rd) such that IP( g)fl = 0 and 

fl = IP ( g)1P (f + h )fl = IP ( g)1P (f)fl . 

This argument is limited to only one field operator on the 
vacuum, and we are interested in finding a dense subset of 
'G' (Rd

) for which the construction may be pushed through 
for arbitrarily many field operators on the vacuum. Hence 
the choice of !!lJ (Rd

). 

Let now [ .t; 17 ~ I C !!lJ (Rd
) and define the correspond­

ing gi 's as in the proof above. We shall need to show that, for 
suitably many.t; E !!lJ (Rd

), the vector 
rr7~ lIP (gi)rr7~ lIP (.t;)fl is nonzero. Given any fE .5Y(Rd), 
we define, for any tEe, .t;(x) E .5Y(Rd) as the function with 
Fourier transform 

where p = (pO, pi , ... , pd ~ I). We first note the following ob­
vious fact. 

Lemma 5.3: Let n EN, [.t; 17~ I C %(Rd), and 
[t i J 7 ~ 1 C 'G' be arbitrary. Then 
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(a, IT qJ U;.,,)a ) = Wn (II." , .. ·,In., ) 
i=l " 

is entire analytic in (t l , ••• , tn) E en. 
_ Proof Obvious, due to the compact support of 
/;, i = 1, ... , n. 

Corollary 5.4: FornEN, {/;J7~1 C &l(Rd) arbitrary 
and { g; J 7 ~ I C .5V(Rd

) as specified above, the set of all 
(tl"'" tn _ I) E Rn 

- I such that 
n n 

II <p (g;.,,) II qJ (/;.,,)a = 0 (tn = 0) 
;=1 i=1 

is nowhere dense in Rn 
- I. 

Remarks: (1) If IE &l(Rd), then so iSh, V tEe. (2) A 
choice of 8; E (0, m), i = 1, ... , n, is tacitly assumed. The re­
sult holds for each such choice. 

Proof By Lemma 5.3, 

II ;UI qJ (q;.,,) ;UI qJ (/;.,,)a 112 

= W4n((f~k, (/~-I k_" .. ·,(g1')",gl.", .. ·,fn.,) (5.7) 

is entire analytic in (t w ", tn) E en. By Theorem 3.6 and (3.2), 
after taking the limits t; ---+ 00, i = 1, ... , n - 1, one by one, 
(5.7) becomes 

n n 

II W4(fr, gr, go/;l = II IIqJ (g;)<p(/;)a 112 = 1 , 
i= 1 i= 1 

using Lemma 5.1 in the second equality. Therefore, given 
any open set ~ C Rn 

- I, (5.7) cannot vanish for all 
(t\, ... ,tn_tlE~.Indeed,since(5.7)iscontinuousint;, Vi, 
it cannot vanish for all (t I"'" tn _ I) in a set dense in ~. Thus, 
the conclusion of the corollary follows. In fact, using 
Theorem 24 in Ref. 22, i.e., since locally the zeros of an 
analytic function of n variables form finitely many n - 1 
(complex)-dimensional manifolds, one can show that the 
mentioned set has Lebesgue measure zero in Rn 

- I. 

To proceed further, we prove a straightforward result 
relying on the support properties of the functions 
{ /; J 7 ~ I C &l (Rd

) and of the corresponding functions 
{ g; J 7 ~ I constructed according to the proof of Lemma 5.1. 
For such functions, let e· = g. i = 1 nand 
e; =.f!_n' i = n + 1, ... ,2n,a~ddenot~b~n(2n)thesetofall 
partItIOns of the set {1, ... ,2n J (which we identify with any 
ordered set of 2n elements). 

Lemma 5.5: Let fT E ll(2n) and u = {i l , ... , i l J E fT. If 

. )' (r; - 8;) > L r; , 
leantr. ..• nJ ;+neanln+I •...• 2nJ 

where r; = rfi , i = 1, ... , n, then f/J = IIJ~ I qJ (e;)a = o. 
Proof For allp; E V +, i = 0, ... , s - 1, th~ product 

ej, (PI - PO)eh (P2 - pt! ... ej,( - PS-I)' 

jl,· .. ,js E {n + 1, ... ,2n J ' 

vanishes if 
s 

Po
o

> '" k rj ,,' (5.8) 
n=1 

as may easily be seen. And for Po, ... , Pk E V + , the product 

ej, (PI - PO)eh (P2 - pt! ... ejk(Pk - Pk- tl, 
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jl, ... ,jk E { 1, ... , n J , 

vanishes if 
k 

p~ < L (rj• - 8jJ ' 
n~1 

by definition ~ the functions g;. Thus, for any 

Pt>""PI-1 E V + ' 

(5.9) 

(supp e;,(PI"- PO)e;2(P2 - pt! ... e; (-PI-I)) n V + = 0, 
Po I 

given the hypothesis of the lemma. This implies, however 
[see (3.5)], by the support properties of the Fourier trans­
forms of the difference-variable Wightman functions, that 
the inner product of f/J with any vector in 9 (Rd)a vanishes. 
In particular, Ilf/J 112 = O. 

Corollary 5.6: Let qJ(x) be a real scalar quantum field 
with mass gap m > O. If n E Nand {/; J 7 ~ \ C d I (Rd

) are 
arbitrary, let p = };7~ I rfi' Let further {h; J 7 ~ led 2(Rd

) 

by any set satisfying };7~ I rh > p +.:i, .:i > O. Then if 

{ g; J 7 ~ I is any set of annihilators for {h; J 7 ~ I , as construct­
ed in Lemma 5.1, satisfying the additional constraint 
};7~ 18; <.:i, we have 

k n 

II qJ( g;) II <p(fj)a = 0 . 
;~ I j~ I 

Proof The argument proceeds as in the proof of Lemma 
5.5. 

Remark: We have employed our freedom to choose 
8; E (0, m), i = 1, ... , k, such that the additional constraint 
};7 ~ 18; <.:i, for any given .:i > 0, may be satisfied. 

Proposition 5.7: Let qJ(x) be a real scalar quantum field 
with mass gap m > O. Let 0 <.:i < m and n E N be arbitrary 
and{/;J7~1 C &l(Rd

) such that, with go i=I, ... ,n,as 
constructed in Lemma 5.1 under the additional constraint 
that };7~ 18; <.:i, 

n n 

(i) II qJ( gil II qJ( f,)a #0; 
;=1 ;=1 

then there exists a set {g; J7~ 1 C .5V(Rd
) such that 

n n 

(ii) II qJ (g;) II qJ (/;)a = a, 
i= 1 i= 1 

(iii) qJ (g;)a = 0, i = 1, ... , n , 

and 
n 

(iv) II qJ( gil II qJ (/;)a = 0, V ff ~ {l, ... ,n J . 
i= 1 iEff 

Remark: Here we have again used our freedom of 
choice of 8; E (0, m) that the construction in Lemma 5.1 al­
lows us, in order to satisfy the additional constraint, for fixed 
n EN. Thus, the annihilator g for the element/; in the set 
{/; J7~ 1 C &l(Rd) depends o~ n, as well as on;. 

nProof { g; J 7 ~ 1 is simply chosen to be {c; : J 7 ~ I' with 
{ C; J; ~ 1 C e selected so that 

(5.10) 

which, by (i), is possible. Then (iii) follows from Eq. (5.2). We 
next verify (ii). 

If there exists a u ko E fT E II (2n) such that 
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L (ri -8i )+m< L ri , 
iEUkonll, ... ,n I i + nEC7"o" I n + I, . . ,2n I 

(5.11) 

then, clearly, there must exist a U kt E 1T such that 

[note that (5.11) cannot be satisfied by u ko = t I, .. ,,2n j, so 
there must always exist another ukt E 1T, if (5.11) obtains], 
since otherwise 

) (ri - 8i )< ) rj> 
iEU~tt. ... ,nl ;+nEa~ln+ 1. .. ,2nJ 

V Uk E 1T with Uk =f.Uko ' 

implies with (5.11) 
n 

L 8i )m, 
i= 1 

which contradicts the hypothesis. As in (5.8) and (5.9) in 
Lemma 5.5, one sees that for any 15k E 1T with 15k n ( 1, ... , n 1 
= (iJ.!'''' ill and Uk n (n + I, ... ,2n 1 = (il + 1'"'' il + s I, if 

Pk E V +' k = 1, ... , 1+ s - 1, 

(s~~p i\(PI - po)ei,(p2 - PI)'" eil+J - PI+s- I)) 
n V,: =0, 

unless 
I I+s 
L (rj-oj ) + m< L rj • 

j=1 j=l+l 

(5.13) 

But in this latter case there exists a ukt E 1T such that (5.12) 
holds, which implies, by Lemma 5.5, that the associated pro­
duct on the vacuum vanishes. 

Weare thus in the position to prove that for any 
thiJ~=1 C 'G'(JRd

), 

(fl, fII <p(hi ) ill <P(gi) i~\ <P(/;)fl) 

= (fl, iUI <p (h;)fl ) (fl, iUI <p (gi) iUI <p (/;)fl ) . 

To see this, we use (3.2) to decompose 

W2n + IIh l, ... , hI' gl'"'' gn'/I"",/n) 

= L W~(".)W~J")'" W~} .. ) 
part. 

into a sum, over all partitions of t hI"'" hi' gl'"'' gn, 

(5.14) 

/I, ... ,/n I, of products ofthe appropriate TVEV's. Since the 
Fourier transforms if;; ( PI"'" P n) of the difference-variable 

TVEV's 7r!"(SI"'" Sn) have support only in ( V,: )n, the 
only nonzero terms in the sums on the right-hand side of the 
equation above are terms arising from subpartitions of the 
partition 

(hl, .. ·hlltgl>· .. ,gn'/I'·"'/nl· 

But the sum over such sUbpartitions, again by (3.2), is equal 
to 

WI(h!> ... , hl )W2n (gl"'" gn,/I"",/n), 

which yields (5.14). Then, as in the proof of Lemma 5.1, one 
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uses (5.14) and (5.10) to show that (ii) is indeed correct. 
(iv) follows from Lemma 5.5, once one notices that 

n 

L (ri -8i » L r j , 

i= 1 iE. V' 

for any A" ~ (1,. .. , n I, since rj >m, V i, and l:7= 18, <m. 
This completes the proof of the proposition. 

We can now define the set of vectors 1f mentioned in 
Theorem 4.1 and prove the assertions made about it. Let 1f I 
be the set of all vectors 

n 

II <p(/;)fl, nEN, (/;17=1 C ~(JRd), 
i= I 

satisfying condition (i) in Proposition 5.7-that is to say, for 
fixednEN, (/;17=1 C ~(JRd),thevectorTI7=I<p(/;)fl is 
in 1f I iff or some choice of 0 <.1 <m and (8 j 17= I C (0, m) 
satisfying l:7 = 18j < .1, and with gj,.s, an annihilator, corre­
sponding to /;,.s" constructed in Lemma 5.1, the vector 

n n 

II <p (gj,.s,) II <p (1;)fl 
j= I j= 1 

does not vanish. With each set t /; 17= I C ~ (JRd) we associ­
ate the number P = l:7 = I rf.' We define the set 1f as the set of 
all vectors 

(5.15) 

such that n7~ I <p (/;)fl E 1f I' V j = 1, ... , N, and such that 
J 

there exists ajo E { 1, ... , N I so that 
Pjo>Pj, V j=f.Jo,J=I, ... ,N,andsothatthe.1 (O<.1<m) 
for which condition (i) in Proposition 5.7 is satisfied by the 

vector n~~ 1 <p (g, )n;: I <p (/; )fl satisfies 
10 10 

.1 <Pjo - Pj, V J=f.Jo· One sees that Proposition 5.7 and 
Corollary 5.6 then yield assertions (i), (ii), and (iii) of 
Theorem 4.1 for each such vector. It remains, then, only to 
show that 1f is dense in Jf' w. 

Lemma 5.8: Let<p (x) be a real scalar quantum field with 
mass gap m > O. Then the set 1f defined above is dense in 

Jf'w· 
Proof By Corollary 5.4 and the strong continuity in tj of 

vectors of the form n<p (/;,t,)fl, and because, as already men­
tioned, Corollary 5.4 holds for each choice of 0 < .1 < m, all 
the vectors in the set 

Ltl eDI <P(/;))fl INEN, 

(njlf=1 eN, (/;J 1 C ~(JRd)] 

are limits of strongly convergent sequences from 1f, Since, as 
previously remarked, every element of d 2(JRd) can be arbi­
trarily well approximated in the topology of 'G' (JRd) by ele­
ments of ~ (JRd), the vectors in the set 

f§ = Ltl CUI <p(/;))fl INEN, 

(nj If= leN, U;jl C d 2(JRd] 

are, as well, limits of strongly convergent sequences from 1f. 
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We recall next that, for any compact tJ C R.d and any 
h E !iJ (tJ), the vacuum fl is separating for 'P(h ). Thus, if the 
vector 

n 

II 'P (hi )fl, 
i= 1 

Ihi l7=1 C u !iJ(tJ) , 
<""'CRd 

is nonzero, one must have 'P(h;)fl #0, 'tJ i = 1, ... , n. In­
deed, unless 

'P (hi) = (fl, 'P (hi)fl )1, 

one must have (I - Pn)'P (hi)fl #0, 'tJ i = 1, ... , n. Since 
.s£ I (Rd

) is dense in %(Rd
) and every function h E !iJ (Rd

) is a 
limit of some sequence I/; I C %(Rd

) in the topology of 
'G'(Rd) [since %(R.d) is dense in 'G'(Rd)], it follows at once 
that every vector of the form 

j~1 (tIl 'P(/;))fl' NEN, 

Injlf=1 eN, l/;J l c !iJ(Rd) , (5.16) 

is a limit of a strongly convergent sequence from ;§ . But 
vectors of the form (5.16) are dense in 3¥' w, since !iJ(Rd) is 
dense in '7ff' (Rd 

) .• 

Remark: This is the sole result whose proof depends on 
the existence of (sufficiently many) strictly localizable test 
functions. If there were another class f of test functions 
dense in '7ff' (Rd ) such that fl is separating for 1'P ( g) I g E f J ' 
then one could do without strict localizability. 
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Any operator that commutes with the S matrix and is additive, i.e., transforms an asymptotic 
incoming n-particle state as a sum ofits constituent one-particle states, is called a symmetry of the 
S matrix. The structure of local S-matrix symmetries in Galilean field theories is known. In this 
paper, S-matrix symmetries that are nonlocal, i.e., may transform asymptotic fields into nonlocal 
operators, are investigated under the assumption that there is a finite number of such symmetries 
in the theory. 

PACS numbers: 11.10.Lm, 11.10.Jj, 11.20.Fm 

1. INTRODUCTION 

In Ref. 1, symmetries of the S matrix have been consid­
ered in the context of Galilean invariant field theories. A 
symmetry of the S matrix Q in a theory of asymptotic fields 
¢ ~X(x) with corresponding annihilation and creation opera­
tors aex(p,a), (aex(p,a))*is defined to be an additive operator, 
i.e., one that is bilinear in incoming fields, 

Q = J d 3p d 3qQaP(p,q)(d"(p,a))* d"(q,,8) (1.1) 

(summation convention) and which, in addition, commutes 
with the S matrix 

(1.2) 

as a form on a suitable domain. Those S-matrix symmetries 
that acted locally, i.e., for which Q,¢ ~X(x) is again a local 
Galilei field, had special properties: 

1. (i) Q ap = 0 for rna =1= rnp, where rna is the mass of the 
state (aex(p,a))*n. 

(ii) Qap = qaP(p,a) o(p - q), where qap is a polyno­
mial in p and derivatives inPk, k = 1,2,3. 
Furthermore, in a theory with scalar particles and with non­
trivial scattering in the sense that the particles can be so 
ordered that the elastic two-particle scattering amplitude, 
for any two consecutive particles, does not vanish in some 
open subset of the sets of momenta allowed by energy and 
momentum conservation (some particles may be counted 
more than oncel), 

2. qap = 0 ap [ a(2rn) - Ip2 + bp + ca 
+dik(Pi Jk -Pk JJ 

+e[poJ;]+ +fa2l +gaP (1.3) 

with constants a, bk , ck , d '\ e, J, and gaP. Here rn = rna 
= rnp since, by (1.1), it suffices to consider a single mass 

multiplet. Thus, Q is a linear combination of generators of 
the 12 parameter Schrodinger groupS together with transla­
tion invariant generators (given by gaP) which, however, 
need not commute with the Hamiltonian. The situation is 
thus fairly analogous to the relativistic case where S is re­
placed by the Poincare group P in statement 2. 

aj This work contains parts of the author's "Habilitatiensschrift", accepted 
by the Physics Department, University of Giittingen. 

Now, it is easy to construct nonlocal S-matrix symme­
tries, at least in a free field theory. Consider a single scalar 
free Schrodinger field ¢ (x) with corresponding annihilation 
operator alp) and define 

Q= J d 3pd 3qa*(p)a(q)exp(p_q)2, (1.4) 

which is additive but for which [Q,¢ (x)] is not a field obeying 
Galilean locality. Statement 1 is thus manifestly false. 

Even for nonlocal S-matrix symmetries, one cou.Id try 
to retain the physical idea that a finite set of quantum 
numbers should suffice to label free particles. This would 
correspond to the assumption that only a finite number of S­
matrix symmetries should be present in the theory. It will be 
shown in the next sections that this assumption is quite re­
strictive. With it, statement 1 can again be proven so that, in 
fact, Q turns out to be local and statement 2 is valid, too. The 
finiteness assumption can even be relaxed somewhat. State­
ment 1 is true under the weaker hypothesis that infinitely 
many S-matrix symmetries are allowed which must, how­
ever, be grouped into finite-dimensional spaces invariant un­
der the Galilei group. This will now be shown. 

2. POLYNOMIAL DEPENDENCE IN DERIVATIVES 

Consider a theory of Galilei covariant asymptotic in­
coming fields ¢ :;(x) with creation and annihilation operators 
(ai"(p,a))*, d"(p,a) obeying Galilei covariant commutation 
relations 

[d"(p,a ),(d"( q, ,8 ))*] ± = 0 up 0 (p - q), 

which transform as follows: 

(2.1) 

U -I(a) ai"(p,a) Uta) = exp[ - ipal ai"(p,a), (2.2) 

U -I(b) ai"(p,a) U(b) 

= exp[ib((2rna)-lp2 + Wall aill(p,a), (2.3) 

U - I(V) d"(p,a) U (v) = d"(p - rna v,a), (2.4) 

U-1(R) ai"(p,a) U(R) = (DS(R ))aP ain(R -lp,,8) (2.5) 

under space translations, time translations, boosts. and rota­
tions, respectively. Here. rna is the mass of cp :;(x) and the 
constant Wu is the inner energy; D S denotes the irreducible 
(2s + 1 I-dimensional representation of the rotation group. 

Any S-matrix symmetry of the form (1.1) has, by Barg­
mann's mass superselection rule,2 vanishing matrix elements 
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between states of different mass multiplets. This fact, proved 
again as Lemma 2.1 of Ref. 1, has nothing to do with locality 
as was emphasized there; part (i) of statement 1 holds in 
general. It is therefore sufficient to consider, from now on, 
only fields of the same mass multiplet ma = m. 

To prove part (ii) of statement 1, it will be assumed in 
the following that the space of all S-matrix symmetries de­
composes into subs paces that are invariant under the Galilei 
group and are finite dimensional. 

Let E be such a finite-dimensional space of S-matrix 
symmetries, and consider an S-matrix symmetry Q E E. 
Since any Galilean transform of Q is again of the form (1.1) 
by (2.2)-(2.5), and since E is invariant under the Galilei 
group G, U -I( g) QU (g) is again in E for any g E G. Hence, 
there exists an operator D ( g): E - E with 

U-I(g)QU(g)=D{g)Q, gEG. 

In any basis QI"'" Qn E E,D (g) is simply afinite-dimension­
al matrix of complex numbers depending on g. It is even a 
representation of G since U ( g) is. By (2.1), the kernel Q ap of 
Q is, as a distribution, given by 

Q aP(p,q) = ((ain(p,a))*fl /Q (ain(q, p ))*.0) 

and D ( g) can be evaluated on Q ap for different elements of 
g E G if (2.2)-(2.5) are used: 

D(a) QaP(p,q) = exp!i(p _ q) aJ QaP(p,q), 

D (b) Q aP(p,q) 

(2.2a) 

= exp! - ib ((2m)-I(p2 - q2) + Wa - Wp)J Q aP(p,q), 
(2.3a) 

D (v) Q ap (p,q) = Q ap (p - mv,q - mv), (2.4a) 

D (R ) Q ap (p,q) 

= Dstal(R lay DstPI(R )P6 Q y6(R -lp,R -Iq). (2.5a) 

Since rotations and translations are continuous automor­
phisms of the test function space Y, 3 the representation D is 
infinitely often differentiable in the group parameters. 

First, the translation subgroups of G will be considered 
which have the following structure: 

Lemma 2.1: Let D be an arbitrarily often differentiable 
representation of the time translation subgroup of Gin E, 
i.e., D fulfills 

D(c)D(d)=D(c+d), c,dERI. (2.6) 

Then there is an operator A:E ~ E with 

D (c) = exp(icA ). (2.7) 

Proof (2.6) implies D (0) = 1. Now differentiate (2.6) 
with respect to c for c = 0, 

D '(d) = iAD(d), (2.8) 
where A: = i- ID '(0). But the linear differential equation 
with the constant coefficient matrix A has a unique solution 
given by (2.7). • 

The three-dimensional analog is valid, too, and gives 
the structure for the translation subgroup: 

Lemma 2.2: Let D be an infinitely often differentiable 
representation of the space translation subgroup of Gin E, 
i.e., 

2821 J. Math. Phys .. Vol. 24. No. 12. December 1983 

D (a) D (b) = D (a + b), a,b E R3. (2.9) 

Then there are three commuting operators A k : E - E with 

D(a) = exp(iakA k ), a = (ai, a2,a3
). (2.10) 

Proof: Choose a basis ek. k = 1,2,3, ofR3. By Lemma 
2.1, for each k there are operators Ak such that 

D(aek ) = exp(iaAd· 

(2.10) implies 

D(aek) D(bel ) =D(aek + bel) =D(bel)D(aek) 

so that the operators A k' Ae will commute, too. Hence 

D (a) = exp(iak Ad. • 
Of course, in general, the matrices A k will not be Hermitian. 

Next, the specific action of D (a) will be considered. Ifin 
(2.2a) new variables p and r: = p - q are introduced and a 
distribution Q ap is defined so that 

Q ap (r,p): = Q ap (p,q), (2.11) 

then all distributions have to be characterized fulfilling 

D (a) Q ap (r,p) = exp(ira) Q up (r,p). (2.12) 

This is done in 
Lemma 2.3: Let D be an infinitely often differentiable 

representation of the translation subgroup of G in E. For the 
kernel Q ap (r, p) of a symmetry Q E E, assume that 

D (a) Q ap (r,p) = exp(ira) Q ap (r,p). (2.13) 

Then all distributions Q ap (r,p) have support in r at most in a 
set B that consists of finitely many vectors in R3 and is inde­
pendent of p,a, p. 

Proof By combining (2.13) with Lemma 2.2, 

exp(iaA) Q aP(r,p) = exp(ira) Q aP(r,p) 

and differentiation with respect to a k gives 
A up A ap 

Ak Q (r,p) = r k Q (r,p), k = 1,2,3. 

Hold k fixed. The matrix A k can be brought into the Jordan 
normal form: The space E splits into a direct sum of sub­
spaces Ei (i = 1, ... ,m, say) and within each subspace, there is 
a basis Q \ , ... ,Q ~{ii of symmetries such that 

I (Ad;" Q~ = a~ Q; + Q;+ I' 1= I, ... ,n(i) - I, 

I (Ak);;;ii Q;" = a~ Q~(il' 
m 

By taking scalar products with one-particle states, these 
equations remain valid if Q;" is replaced everywhere by the 
corresponding kernel (Q ;" )ap (r,p). For I = n(i), 

(a~ - rk)(Q~(,,)ap(r,p) = 0 

so that (Q ~(I) )ap (r,p) has only support for rk = a~. More gen­
erally, 

(ai - rk)n1il-l+ I (Q;tP(r,p) = 0 

as one can prove by deduction from I + 1 to I: Since for 
I #n(i) 

(a~ - rd (Q;)ap(r,p) + (Q;+ I tP(r,p) = 0, 

by multiplication with (ai - rk) n(ii- I the assertion follows, 
as the second term is zero by the deduction assumption. 
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Hence, all distributions (Q ;r/3(r,p) have their support at 
most for r k = a~. The Q a{l are linear combinations of the 
(Q ~)a/3 and have their support, in rk , only in the points 
ak , ... ,ar;:. For another index I, choose another basis in E such 
that A I is in the Jordan normal form, and proceed as above . 

tor: 

• 
One can even show that B consists only of the zero vec-

Let Bo: = [r, E B Ir; #0). Under rotations, by (2.5a), 

Q afJ(r,p) 

= D *'i(R Jay D s( f31(R )/38 D (R -I) Q YO(R - Ir,R - 'pl. 
(2.14) 

Proceed indirectly and assume that for some Po there is a 
distribution Q al3 (r,po) which has, in r, support in Bo. Choose 
ro E Bo so that the left-hand side does not vanish. Then the 
right-hand side of (2.14) is nonzero for p = Po, r = r 0' and all 
rotationsR. On the other hand, ifR varies,R -Iro varies over 
the whole surface ofa ball in R3 with radius Irol #0. There­
fore, there exists a rotation Ro which rotates the finite num­
ber of points in Bo in such a way that no rotated point lies 
again inBo: R 0- 'Bo n Eo = 0. For this rotationRo however, 
the right-hand side is zero. This contradiction proves that 
any distribution Q a{J(r,p\ has support at most for r = 0 
which results in 

Theorem 2.4: Let E be a finite-dimensional, G-invariant 
space of S-matrix symmetries of the form (1.1). Then, the 
kernel Q a/3 of any Q E E fulfills (i) Q a/3 = 0 for rna #m/3' (ii) 
Q a{J(p,q) = 0 for p#q. 

3. POLYNOMIAL DEPENDENCE IN MOMENTA 

By Theorem 2.4, Q a/3 has the representation 

Q a/3(p,q) = q,:'f3(p) 8(v)(p _ q), (3.1) 

where the multi-index v = (V I ,V2,V3) in the 0 function de­
notes 11k derivatives with respect to Pk - qk' The coefficient 
q,~{J(pJ can still be an arbitrary distribution in p. It wiIl be 
shown in this section that q,:'/3(p) is, in fact, a polynomial in p. 

Consider the boost subgroup of G. Combining (3.1) and 
(2.4aJ gives 

D (v) q,~/3(p) = q,~{J(p - mY), (3.2) 

and Fourier transformation in the variable p results in 

(3.3) 

On the other hand, the boost subgroup is isomorphic to 
the translation subgroup. Hence, Lemmas 2.2 and 2.3 are 
applicable to (3.3), which shows that the distributions q,,,,f3(x) 
have support, in x, in a set C that is independent of v, a, {3 and 
consists of a finite number of vectors only. 

As in Sec. 2, it can be shown that C consists of the zero 
vector only: By (3.1) and (2.14), 

D (R ) q,,,,/3(p) O(vi(p - q) 
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= (D sja'(R ))ay(D S(/3i(R ))/18 qt8(R -Ip) 8(Vi(R -I(p - q)). 

(3.4) 

Operators of differentiation transform under rotations as 
vectors so that 

(3.5) 

where D is some tensor product of D '-representations of the 
rotation group. Insert (3.5) into (3.4), compare terms with the 
same number of derivatives, and perform a Fourier transfor­
mation in p, 

q;/3(x) = D(R -')(Dsja)(R ))ay 

X (DS\/1i(R ll/38(D(R n; qtO{R -IX), (3.6) 

so that the summation in v is now over terms with I. 11k 

= I. Ilk only. From now on, one can proceed as in (2.14). Let 
Co consists of the nonzero vectors of C, and assume indirect­
ly that there is a distribution q;/3(x) with support in some 
vector Xo E Co. Again, one can find a rotation Ro such that 
R 0- I Co and Co have an empty intersection so that, for x = Xo 

and R = Ro, (3.6) gives a contradiction. Hence, lJ::/3 has sup­
port only at zero, and thus q::p(p) is a polynomial in p. To­
gether with Theorem 2.4, this proves 

Theorem 3.1: Assume that the space of S-matrix sym­
metries E decomposes into finite-dimensional subspaces Ei 
invariant under the Galilei group G. Then, the kernel Q 0/3 
= 0 of any Q E E fulfills (i) Q a/3 = 0 for ma #mfJ , (ii) 
Q a/3(p,q) = qafJb(p _ q), 

where qa/3 is a polynomial in p and Pk-derivatives k,I,2,3. 
Thus, any Q E E is, in fact, local so that the results of 

Ref. 1 for local S-matrix symmetries in theories with nontri­
vial scattering (statement 2 of the Introduction) can be used: 

Theorem 3.2: Assume a theory with scalar asymptotic 
particles which can be so ordered that the elastic two-parti­
cle scattering amplitude, for any two consecutive particles, 
does not vanish in some open neighborhood of the sets of 
momenta allowed by energy and momentum conservation. 
Then, under the assumptions of Theorem 3.1, Q E E has the 
form (1.3). 
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Following the ideas of Guralnik and Kibble and those of Larsen and Repko, we introduce a 
general method to calculate the first-order Lagrangian of Bargmann-Wigner equations (BWE) of 
arbitrary spin, and make explicit calculations in case of spin 2. Finally, some considerations on the 
motivation of this method and on the invariance of the Lagrangian under the symmetric group 
and the general Lorentz group are discussed. 

PACS numbers: 11.10.Qr 

1. INTRODUCTION 

It is well known that the solutions of the BWE are fields 
that transform under the symmetric group as totally sym­
metric multispinors of definite mass and spin. 1 

In order to construct a first-order Lagrangian of the 
BWE for spin greater than one it is necessary to use auxiliary 
fields of mixed symmetry that transform as irreducible rep­
resentations of the symmetric group. These multi spin or 
fields of mixed symmetry also have the properties of definite 
mass and spin. 2 

Guralnik and Kibble3 were able to write down a La­
grangian for massive particles of spin 1 with totally symmet­
ric spin or of rank 3 and auxiliary fields, without any extra 
conditions. This Lagrangian leads to the BWE for the totally 
symmetric spinors and to the vanishing of the auxiliary fields 
of mixed symmetry. 

Larsen and Repk04 have generalized the ideas of Gural­
nik and Kibble. They found the expression for the operator 
connecting two arbitrary fields which transform as two irre­
ducible representations of the symmetric group Sn . But they 
did not give a general method to obtain the coefficients in the 
Lagrangian leading to the correct Euler-Lagrange equa­
tions, the solution of which are the BWE of definite mass and 
spin. They only succeeded in the trivial case of a Lagrangian 
for particles of spin 0 using multispinors of rank 4. 

We present now a general method for finding the La­
grangian of BWE which can be applied to any spin and we 
have calculated it for particles of spin 2. Our ideas are based 
in the work of Larsen and Repko, combined with that of 
Guralnik and Kibble. We refer those papers to the reader, 
where both methods are given in detail. 

2. COUPLING BETWEEN MUL TISPINORS OF DEFINITE 
SYMMETRY 

Let F and G be two multispinors of rank n, that trans­
form as two irreducible representations of the symmetric 
grou p S n' The kinetic terms in the Lagrangian are of the 

form FOG, where a is an operator matrix of the required 
dimension to connect the representations F and G, and its 
elements are linear combinations of Dirac operators, 

(y P)k = I X I X .. ·xyp)X .. ·X 1 

with (y p) in the k-position. 
If F belongs to the ("l, ) representation and G to the ( /1) 

representation of Sn' the js-components of a are given by 
n-I 

[0(11,/1)]), = I 13k <l1j, (n - 1,I)k I/1S), 
k~1 

where 13k are the operators 

13k = 1 { ± (y p); - k (y P)k + 1 }, 

~n(n-l)~k(k+l) i~1 

(n - 1,1) is the representation of Sn corresponding to the 
same partition and ("l,j(n - 1,I)k I /1s) is the Clebsh-Gordan 
coefficient connecting the ("l, ) and the (n - 1,1) representa­
tion to the ( /1) representation. 

If ("l, ) = (/1) then there is also another operator a con­
necting the F-multispinor with itself, namely 

I n 

a= - I (YP)k' 
n k~ 1 

As Larsen and Repko pointed out, the symmetry of 
[OG] under a permutation of indices is the same as that ofF 
under the same permutation; therefore the Lagrangian is in­
variant under the symmetric group S n' and F may be varied 
as if all of its components were independent. 

In the case of S4 we write down the components of the 
fields and the coupling among them. 

The partition of 4 are 

(4), (3,1), (22), (2Y), (14), 

or in short form, 

(4), (3), (2), (3), (4). 

The fields, using the notation of Larsen and Repko, are 

(4): tPla /3y8 i' 

G
X'IU/3YI8 ) 

(3): Xa/3y8 = X "lu/3lly8 1 ' 

'" [u/3 liy8 I 

(2): A. = (ifJ 'la/3IIY8 I ) 
'f'a/3yo A. " , 

'I' [a/3l1yl5 1 

(

S'IU/3I1 YIi I) 
(3):Sa/3y8 = S"[a/3l1yli) , 

S '" [a/3yI8 
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For the couplings we have 

a = H!YP)I + (yp)z + (ypb + (YP)4J, 

/31 = Ti! (YP)I + (yp)z + (ypb - 3(YP)4J, 

/32 = (1I6v1l!(YP)1 + (yp)z - 2(ypbJ, 

/33 = (1I2~){(yp)1 - (yp)Zl· 

The coupling among the fields are given (up to an arbitrary 
factor) by 

0(4,3) = (/31/32/33)' 

The rest of the operators are obtained by interchanging rows by columns. 

- v1/33 

/31 - v1/32 

- /32 

/3" ) 
/3 ' - 2 

The Lagrangian for massive particles of spin 2 will be given by the kinetic terms and the mass terms with arbitrary 
constants, namely, 

_ _A""...., A. 

!.t' = I/;al/; + a I I/;O(4,3)X + a&0(3,4)1/; + a3iax + a~iO(3,3)X 
+ a4iO (3,2)lP + asiO (3,3); + a6¢O (2,3)X + a7¢alP + as¢O (2,3); 

+a9tO(3,3)x +a lOtO(3,2)lP +allta; +a;ltO(3,3); 

+ a 12tO(3,4)fl + al3flO(4,3); - b1m¢1/; - b2mix - b3m¢lP 

- b4mt; - bsmflfl. (1 ) 

After variation with respect to the independent components of the multispinors we obtain the Euler-Lagrange equations, 
which can be written in the matrix form 

A 

a c I O(4,3) 0 0 0 I/; I/; 
A A A A 

c2O(3,4) c"a + c~ 0 (3,3) cP(3,2) cP(3,3) 0 X X 
A A 

0 c6O(2,3) c7a cgO(2,3) 0 lP =m lP , (2) 
A _ A _ A __ A __ 

0 c9O(3,3) cIOO(3,2) clla +c;IO(3,3) c IP(3,4) ; ; 
A __ 

0 0 0 c130 (4,3) 0 

where the coefficients b i have been absorbed in the Ci , for instance, 

C1 = a/bl' C2 = a2/b 2, C3 = a,,/b2, c; = a;/b2, etc. 

We can express the matrix equation (2) in the symbolic form 

AX=mX. 

3. THE PROJECTION OPERATORS 

The method we introduce now is to find out the arbi­
traryconstantsa i , bi' ci necessary to deduce the BWE for the 
totally symmetric field I/; and to annihilate the auxiliary 
fields X,lP,;,fl. This method is based in the alternative 
expression of the BWE written by Guralnik and Kibble. 

With the help of the projection operators 
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A ± (p) = ~(1 ± ;). 

where P = (p2)112 (p2 #0), they introduce the mutually or­
thogonal projection operators 

P±(p)=A± XA± X···XA±, 

Po(p) = I-P+(p)-P_(p), 
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where each operator A ± (p) acts on different tensor indices. 
The BWE are equivalent to 

(p - m)P +(p)tP = 0, 

- m Po(p)tP = 0, 

( - p - m)P -(p)tP = 0. 

In fact, since (y P)kA ± = ± pA ± ' we have 

(YP)k P ± (p) = ±P P ± (p), 

and from (3b) (YP)k tP = pIP +( p) - P -( p))tP· 

(3a) 

(3b) 

(3c) 

Therefore (YP)ltP = (yp)ztP = ... = (YP)n tP. From (3a) 
and (3b) we get 

(p - m)[A+(p)lktP = 0, 

(-P - m)[A_(p)htP = 0. 

Adding both equations, finally we obtain 

p[A+(p)-A_(p)lk =m[A+(p)+A_(p)lk 

or 

(YP)k tP = mtP· 

Equations (3a) and (3c) for the totally symmetric tensor 
fields and the auxiliary fields are easily obtained applying the 
projector P +(p) and P -(p) to the five equations (2): 

way: 

(p - m) P +(p)tP = o} 
(_p - m)P -(p)t/J= ° ' (4) 

(C3 P-m)p+(p)x=0} (5) 
( - C3 P - m) P + ( p)X = ° ' 

(C7 P-m)P+(p)¢=0}, (6) 
(-c7 P-m)P_(p)¢=0 

(ClIP - m) P +(p); = oJ, 
(-cllP-m)P_(p);=O (7) 

- m P +(p)!1 = OJ. (8) 
- mP_(p)!1 =0 

The operator Pol p) can be decomposed in the following 

Po(p) =A+A+A+A_ +A+A+A_A+ 

+A+A_A+A+ +A_A+A+A+ 

+A+A+A_A_ +A+A_A+A_ 

+A+A_A_A+ +A_A_A+A+ 

+A_A+A_A+ +A_A+A+A_ 

+A+A_A_A_ +A_A+A_A_ 

+A_A_A+A_ +A_A_A_A+, 

where the direct product among the A 's is understood. (This 
expression comes from the decomposition of the identity op­
erator in terms of the mutually orthogonal projection opera­
tors.) 

In order to have Pol p)tP = 0, we apply each of the terms 
in the last decomposition to the first equation (2) and require 
that the left side of the resulting expression should vanish. 
But this is impossible, since, for instance, 

A +A +A +A _atP = ~pA +A +A +A _tP=l-O. 

We can avoid this difficulty if we iterate the matrix 
equation (2), namely 
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A 2X= m2X, (9) 
and then apply each of the projectors 

A+A+A+A_, A+A+A_A+, 

A+A_A+A+, A -A+A+A+ 
and 

A+A_A_A_, A_A+A_A_, 

A_A_A+A_,A_A_A_A+ 

to the five equations (9). In order that the right side should 
vanish, we require that the coefficients of the projection op­
erators applied to the tensor fields on the left should vanish, 
giving some conditions on the coefficients c's. 

Next, we iterate again the matrix equation, i.e., 

A 3X = m3X, (10) 

apply to each one of the five equations the projectors 

A+A+A_A_, A+A_A+A_, A+A_A_A+, 

A_A+A+A_, A_A+A_A+, A_A_A+A+, 

and require that all the coefficients of the projectors applied 
to the tensor fields on the left vanish, giving new relations 
among the c's. 

The conditions that the c's must satisfy in order that 

Po(p)tP = Po(p)X = Po(p)¢ = Po(p); = Po(p)!1 = ° 
are written down below. Before each equation, the symbol, 
(A 2)ij or (A 3)ij is expressed denoting which matrix element 
has been used after applying each of the projector operators 
independently to Eqs. (9) and (10). 

(A 2)1l:C 1C2 + 1 = 0, (11) 

(A 2)12:CI(1 - 2ci + c3 ) = 0, (12) 

(A 2)zI:c2(1 - 2ci + c3 ) = 0, (13) 

(A 2b:(C3 + Ci)2 + C4C6 + CSC9 = 0, (14a) 

C1C2 + (2ci - C3)2 = 0, (14b) 

(A 2b:C4(C3 + ci + c7 ) + CsC w = 0, (15) 

(A 2b:c4cS + CS(c3 + ci + Cll + Cil) = 0, (16) 

(A 2b2:C6(C3 + ci + c7 ) + CSC9 = 0, (17) 

(A 2b3:C4C6 + CsC w + c/ = 0, (18) 

(A 2b4:CS(Cll + cil + c7 ) + CSC6 = 0, (19) 

(A 2)42:C6CW + C9 (C3 + ci + Cll + Cil) = 0, (20) 

(A 2)43:CW(CII + cil + c7 ) + C4C9 = 0, (21) 

(A 2)44:(Cll + Cil)2 + csc w + CSc9 = 0, (22a) 

c12c 13 + (2cil - Cll )2 = 0, (22b) 

(A 2)S4:CI3(1- 2cil + Cll) = 0, (23a) 

(A 2)sS:C12c13 = 0. (23b) 

The last two equations are not necessary since 

A +A +A +A _!1 = A +A +A _A +!1 = A +A _A +A +!1 

=A_A+A+A+!1 = ° 
because of the anti symmetry of the indices of !1. 

The same is true for (22b) since this constraint comes 
from the coefficient of A + + + _ ; m [a(3y].5; but this is zero 
because of the antisymmetry of the indices [a PYl. 
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(A 3)I2:CI(CIC2 + 2C4C6 ) = 0, 

(A 3bl:C2(C ICZ + 2C4C6 ) = 0, 

(A 3b:c;3 + ~ c; CsC') - ~ csc"c; I = 0, 

(A 3!n:C4(C IC2 + 2C4C6 ) = 0, 

(A 3b4:CS(C;2 + c;i + ~ CSC9 - C;C;I) = 0, 

(A 3bz:C6 (C IC2 + 2C4C6 ) = 0, 

(A 3b4:C8(c12CI3 + 2cgc lO) = 0, 

(A 3)42:C9(C;2 + c;i - c; c; I +! csc,,) = 0, 

(A 3)43:CIO(CI2C13 + 2cgc lO) = 0, 

(A 3)44:C;i + ~ csc"c; I -! c; CsC" = 0, 

(A 3)4S:cdcI2C13 + 2cgc]()) = 0, 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31 ) 

(32) 

(33) 

(34) 

(A 3)S4:CI3(CI2CI' + 2agc lO) = 0. (35) 

From (11) we obtain C IC2 = -1. 
From (26) and (31) we obtain c; = c; I and 

CSCg = - 3C;2. 
From (24) we get C4C(, = - ~CIC2 = !. 
From (14) we get c, = 0, c; =!. 
From (16), (20), and (22a) we get CgC]() = - ~ and 

CII = - 2. 
From (15), (17), (19), and (21) we get C7 = 1. 
From (35) we have C I2C 13 = - 2cgcIO = 3. 
The rest of the conditions are consistent with these solu­

tions, except (22b), (23a), and (23b) which are not necessarily 
zero because the projectors applied to the corresponding 
multispinors are zero. 

Equations (14)-(35) imply that each of the tensor fields 
satisfies the following equations: 

(+p-m)p+(p)¢=O} 
(-p-m)P+(p)¢=O, 

Po(p)¢ = ° 
equivalent to (y p), ¢ = m¢; 

P +(p)X = P_(p)X = Po(p)X = 0, 

equivalent to X = 0; 

(p - m) P +(p)c/J = O} 
Po(p)c/J = ° , 

( - p - m) P _ (p)c/J = ° 

equivalent to (yphc/J = mc/J; 

( - 2p - m)P + (p)S = O} 
Po(p)S = ° , 

(2p - m) P -(p)S = ° 

equivalent to (YP)kS = (mI2)s, 

P +(p)fl = P _(p)fl = Po(p)fl = 0, 

equivalent to fl = 0. 
In order to have c/J = ° we exclude in the Lagrangian 

those components of the tensor c/J which have only the in­
dices 1 or 2, since tensor components with indices 3 or 4 are 
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annihilated by the BWE. (It means that we exclude only the 
tensor component c/J [12[[ 121 from the 15 independent compo­
nents of the tensor c/J [a,q I [yb I and similarly in the tensor 
c/J la,qllybl.) The tensor fields S are also annihilated by the BWE 
because of the antisymmetry5 of the three indices of S [afJl' l b. 

Finally we want the Lagrangian to be Hermitian; there­
fore the matrix A in (2) should be Hermitian and hence the 
coefficient e's are real and those coefficients symmetric with 
respect to the principal diagonal should be equal. This is 
impossible with the e's but we still have at our disposal the 
arbitrary coefficient b 's. If we take 

b , = 1, b2 = - 1, b} = - 1, b4 = 1, bs = 1 

we have the desired result, namely, 

a 2 
- a 2 

- 1 - ° '- I 1 - 2 - , 03 - , a3 - - 2' 

a~ =~, a; =~, a~ =!, a7 = - 1, 

a~ ==~, a~ == i, afo ==~, a II == - 2, 

a;1 =!, a~2 =ai3 =3. 

Substituting these values, we get for the Lagrangian6 of 
massive particle of spin 2, 

Y = ¢a¢ + [¢O (4,3)X + iO (3,4)¢] - !,to (3,3)X 

+ (lIV2)[XO (3,2)c/J + ~O (2,3)X] + (\I'3/2)[XO (3,3)S 

+ to (3,3)X] - ~ac/J + (\1'3/2) 

X [~O (2,3)S + to (3,2)c/J ] - 2tas + !to (3,3)S 
+ \I'3[tO (3,4)fl + nO (4,3)S] 

- m¢¢ + mix + m~c/J - mts - mflfl. 

4. DISCUSSION 

The use of the iteration of the matrix equations (9) and 
(10) is required in order to have necessary and sufficient con­
ditions to obtain the BWE for a totally symmetric multi­
spinor of rank 4. [In the case of rank 3, it is easily proved that 
one needs only to iterate twice the matrix equation. 7

] This 
suggests that we have to iterate (n - 1) times in order to 
obtain the BWE for multispinors of rank n. 

The solution for the coefficients is unique, but this im­
plies in the case of spin 2, that the fields ¢ and c/J satisfy the 
BWE, and the rest are zero. But if we want to eliminate also 
the auxiliary field c/J, as desired, we can do it by suppressing 
one component field in the Lagrangian from the beginning, 
and then the rest of the components of c/J will be zero at the 
end. 

In the last case, the Lagrangian will be invariant under 
the symmetric group, namely, under any permutation of the 
spinorial indices, but it will not be invariant under the com­
plete Lorentz group, since to each spino rial index we have to 
apply the generators of the Dirac representation. 

'v. Bargmann and E. Wigner, Proc. Natl. Acad. Sci. USA 34, 211 (1948). 
2M. A. Rodriguez and M. Lorente, 1. Math. Phys. 22,1283 (1981). 
'G. S. Guralnik and T. W. B. Kibble, Phys. Rev. 139, B712 (1965). 
-1M. L. Larsen and W. W. Repko, J. Math. Phys. 19, 930 (1978). 
'See Ref. 2, p. 1286. 
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"If we take tP = X = 0 and then 
a, = a2 = a, = a; = a4 = a, = a" = a4 = b, = b2 = 0 in the Lagrangian 
11), we obtain, from(II)-(35),a 7 =a, =a 111 =a ll = I,a;, =0, 

a'2 = au = ,2, b, = I, b. = b, = - I which cors..esponds to the Lagran­
gian (after redefinition of the coupling operators 0) found by Larsen and 
Repko for BWE ofrank-4 multispinors representing massive particles of 
spin O. 

2827 J. Math. Phys., Vol. 24, No. 12, December 1983 

7This iteration leads to the same operator equations for the totally symmet­
ric multispinors as those found by Larsen and Repko (see Ref. 4). In case of 
rank-3 spinors the /3, annihilate the operator a 2 

- 1/3 2, which appears in 
the component (A 2)" of the matrix equation A 2 X = m 2X. In the case of 
rank-4 spinors the /3, annihilate the operator a(a2 

- /3; - /3 i - /3 i) 
which appears in the component (A '),' of the matrix equation A 'X = m'X. 
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A conformally invariant quantum electrodynamics is constructed. The setting is realistic space­
time (rather than Euclidean), and a complete Gupta-Bleuler quantization scheme is carried out. 
Conformal in variance of the quantum field theory (as opposed to either classical field theory or to 
a theory defined by its Feynman rules) requires a richer Gupta-Bleuler structure than has been 
considered previously. Yet the essential features of this structure are preserved. The requirement 
that the wave equation be of second order fixes a unique action that already contains the gauge­
fixing terms that are required in any complete quantum field theory. The "Lorentz condition" 
turns out to be the transversality conditionYaaa (y) = 0 (in the manifestly covariant six­
dimensional notation); this condition has to be treated in the same way as the Lorentz condition 
JI'AI' (x) = 0 (four-dimensional notation), as a boundary condition on the physical states. 

PACS numbers: 12.20.Ds 

I. INTRODUCTION 

This paper deals with the problem of setting up a formu­
lation of quantum electrodynamics that is manifestly invar­
iant under the transformations of the full conformal group. 
To put our work in perspective, a very short review of the 
history of the subject may be useful. 

The in variance of Maxwell's equations has been known 
since the early papers of Cunningham and Bateman. I The 
six-dimensional formalism that makes the invariance mani­
fest was invented by Dirac2 and developed by Mack and 
Salam3 and many others.4 As far as classical electrodynam­
ics is concerned, we have little to add. Conformal invariance 
in quantum field theory was exploited by Baker and John­
son,s by Mack and Symanzik,6 by Adler,7 and by many oth­
ers,x but all these authors were primarily concerned with the 
Green's functions of the theory, or with the Feynman rules. 
Here we do have something new, namely, a complete 
Gupta-Bleuler quantization procedure that is manifestly 
conform ally invariant. Much of the work cited was carried 
out on the Euclidean version of electrodynamics; this may be 
convenient for the study of Green's functions, but it would 
completely distort the salient features of the Gupta-Bleuler 
quantization scheme. This paper is concerned exclusively 
with real, Minkowski space-time electrodynamics. 

Motivation for the present investigation comes from 
suggestions that have repeatedly been put forward, concern­
ing conform ally covariant theories of gravity and supergra­
vity. While Einstein's action may be dominant at low ener­
gies, other terms in the action may be responsible for high 
energy behavior. The conformally invariant action ofWeyl'! 
is particularly tantalizing. Indeed, theories that contain both 
the Weyl action and the Einstein-Hilbert action have some­
times been called "manifestly renormalizable." The idea is 
that the conform ally invariant Weyl action dominates at 
high energies, providing an ultraviolet cutoff that makes the 
theory renormalizable, while the conformal symmetry­
breaking Einstein action dominates at low energies and ac­
counts for observed phenomena. 10 It is believed II that such 
theories contain ghosts, because of the appearance of higher 
order derivatives. So it may be, but it seems that the question 

has never been fully investigated. The work presented here 
lays the groundwork for a thorough investigation of confor­
mally invariant quantum gravity. 

The spectacular development of modern gauge theories 
is another source of inspiration. Some of these theories are 
conformally invariant in the classical formulation. 12 The 
Gupta-Bleuler structure has been extended by the introduc­
tion of Faddeev-Popov ghosts 13 and playa major role in the 
BRS quantization scheme l4 for field theories of the Yang­
Mills type, including gravity and supergravity. 15 The 
Gupta-B1euler structure appears to be very fundamental 
and further studies seem to be called for, particularly in the 
context of nonconventional gauge theories 16 and in confor­
mally invariant field theories. 

The connection between renormalizability (both ultra­
violet and infrared) and dilatation invariance is easily under­
stood in terms of power counting. There is a strong suspi­
cion, however, that full conformal invariance may playa 
deeper role in the renormalization program. This is especial­
ly evident in the case of the problems of the infrared and the 
phenomenon of anomalous dimensions (see Todorov et al., 
Ref. 8). But most previous work on conformal invariance has 
been concerned with the properties of Green's functions, and 
not with quantum fields. As we shall show here, the full 
incorporation of conformal in variance in a canonical theory 
of quantum fields requires the introduction of additional 
gauge fields. The effect that these new fields may have on the 
renormalization program has not yet been examined. We 
suggest that such an investigation may be fruitful, not only in 
QED, but perhaps especially in nonabelian gauge theories. 

The idea that massless particles may be composites 17 is 
gaining ground. In one ofthese modern versions of the "neu­
trino theory oflight," the constituents are described by a 
new type of field theory. I x The physical state space of these 
fields is dramatically reduced in comparison with conven­
tional fields, and for this reason an equivalent three-dimen­
sional formulation may be preferable. This leads to three­
dimensional, conformally invariant field theories, 19 which 
provides another area for application of the ideas of this pa­
per. 
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The main results of this paper are included in the fol­
lowing summary. Section II is a brief outline of the familiar 
Gupta-Bleuler quantization scheme for quantum electrody­
namics. The purpose of including this well-known material 
is to establish a terminology that will be applied later in an­
other context; in particular, the notion of Gupta-Bleuler tri­
plets is presented in such a manner as will facilitate general­
izations. 

Section III initiates the study of conformal QED with 
an account of the relevant representations ofSO(4,2). These 
are representations with positive energy, and they are there­
fore characterized (not always uniquely) by a minimal 
weight. The phenomenon that characterizes gauge theories, 
and leads to indefinite-metric quantization, is the appear­
ance in a field theory of representations that "leak," that is, 
indecomposable representations. Among representations 
with minimal weight, opportunities for leakage occur only in 
very exceptional cases, and a fairly complete classification of 
the possibilities is carried out. A very simple derivation of 
sufficient (and, as it turns out, necessary) conditions for the 
unitarity of minimal weight representations is also given. 

Section IV introduces Dirac's manifestly covariant for­
malism of symmetric tensor fields on the 6-cone. Conditions 
for the existence of conformally invariant wave equations (of 
any order) are given. Invariant subspaces of fields are defined 
by means of subsidiary conditions: transversality, diver­
gencelessness, tracelessness. These subspaces usually carry 
irreducible (projective) representations of the conformal 
group; however, in exceptional cases they contain invariant 
subspaces of "gauge fields." There are two main types, "cur­
rent type gauge fields" and "gradient type gauge fields." 
These gauge subspaces are not invariantly complemented 
and signal the presence of a gauge structure. An intimate 
correspondence is established between these exceptional 
gauge structures and the nondecomposable representations 
conjectured in Sec. III, and the existence of some of the latter 
is demonstrated. In physical terms, what becomes known at 
this stage are the "physical photons" and the "gauge pho­
tons." The "scalar photons" (the third component of the 
Gupta-Bleuler triplet, needed for quantization) have not yet 
appeared. 

The "scalar photons" may be found by analyzing the 
propagators, and this is done in Secs. V and VI. The analysis 
is carried to completion in the cases that are of interest for 
electrodynamics. The scalar photons are described. The 
propagator has precisely the structure that guarantees that 
only physical photons propagate between conserved cur­
rents. The "Lorentz condition," that is, the condition that 
removes the scalar photons, turns out, surprisingly, to be the 
condition oftransversality, Yaaa (y) = 0, and not, as expect­
ed, the condition of divergencelessness, aa aa = O. Conse­
quentlY,Yaaa = 0 is a condition that cannot be imposed on 
the quantized field. Instead, it must be enforced as a bound­
ary condition on the physical states. The suitability of this 
boundary condition is confirmed by the fact thatYaaa is a 
free field. 

An action principle is formulated in Sec. VII. Under the 
requirement of strict conformal invariance there is no sec­
ond-order, gauge invariant wave equation. For the formula-
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tion of a classical field theory, where full gauge in variance of 
the field equations may be desirable, there is a gauge and 
conformal invariant wave equation of the third order. To 
formulate a quantum field theory, one needs to introduce 
gauge fixing terms in the action. The simplest choice is to 
drop the third-order terms; one is thus led to a unique sec­
ond-order, conformally invariant wave equation. In this 
gauge the theory is easily quantized in the Gupta-Bleuler 
manner. Previous treatments of the Feynman rules and the 
Green's functions of conformal electrodynamics have re­
stricted the vector potential by imposing transversality, 
y·a = 0, from the outset. This is why Adler,7 for example, 
must use a propagator that is not covariant. It is thus crucial 
to recognize that y·a = 0 plays the role of Lorentz condition 
for conformal QED. When interactions are included, then 
one finds, in addition to the gradient-type gauge phenomena 
associated with the potential, that current-type gauge trans­
formations also appear. 

Section VIII contains all our main conclusions about 
conformal QED in the ordinary, four-dimensional notation. 
It has been written so as to be as self-contained as possible, 
and it will therefore not be summarized in this place. The 
main feature is the appearance of two spinless fields, and an 
extension of the indefinite metric space of one-particle states. 
Section IX discusses the breakdown of conformal symmetry 
by the introduction of a causal structure, and suggests future 
developments. 

II. GUPTA-BLEULER TRIPLET IN QED 

Classical electrodynamics employs a fully gauge invar­
iant action. In QED, however, it is necessary to choose a 
propagator, and this implies a choice of gauge. According to 
the modem view, the propagator is fixed by the choice of an 
action that includes gauge fixing terms, as originally suggest­
ed by Fermi.20 The simplest choice is 

L = J dx (!A"DA
" 

-A.J). (2.1) 

The current will be treated, for the present, as fixed and 
external. It must be conserved, a·J = O. The field equation is 
DA=J. 

To prepare for quantization one begins with free fields 
with positive energy satisfying 

DA
" 

=0, (2.2) 

IIA 11
2

_ - J d3XAIJJ<y4'1 < 00 • (2.3) 

The norm is indefinite, and this is the crux of the prob­
lem. The Poincare group acts on the vector fields in the usual 
way, preserving both (2.2) and (2.3). [The restriction to posi­
tive energies will be maintained, although this will not al­
ways be emphasized, throughout this paper.] 

The Gupta-Bleuler triplet 'r'::J 'r::J ,/Vg will now be 
defined. The space 'r g of "gauge states" or "longitudinal 
photons" consists of all (positive energy) solutions of (2.2), 
(2.3) of the formAl' = al'A. This space is invariant for the 
action of the Poincare group. The space ')Y consists of all 
solutions of (2.2), (2.3) that satisfy the Lorentz condition 

a·A = 0 (Lorentz condition). (2.4) 

Although erg is an invariant subspace of 'r, it is not invar-
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iantly complemented. The quotient space 'Y /'Yg of equiv­
alence classes is the space of "physical states," or "transverse 
photons." Finally, 'Y' is the space of all solutions of (2.2), 
(2.3). Although 'Y' is an invariant subspace of 'Y', it has no 
invariant complement in 'Y'. The quotient space '1/'/'Y is 
the space of "scalar states" or "scalar photons." The appear­
ance of this triplet seems to be universal in gauge theories, 
and crucial for quantization. Most of the following also ap­
pears to be very general, and the terminology (gauge states, 
physical states, scalar states, Lorentz condition) will be ap­
plied in a wider context. 

The norm (2.3) is indefinite. When it is restricted to 'Y it 
becomes semidefinite. The radical of (2.3) in 'Y (the set of all 
fields in 'Y orthogonal to 'Y) is 'Y g; a positive-definite norm 
is thus induced on 'Y / 'Y g' and completion turns this space 
of physical states into a Hilbert space ~. The action of the 
Poincare group in ~ is the unitary representation 
D (0,1) Ell D (0, - 1), D (0,,1 ) being the UIR with zero mass and 
discrete helicity A. The subspace 'Y'g may also be turned into 
a Hilbert space, in which the action of the Poincare group is 
D (0,0). Finally, a representation equivalent to D (0,0) is in­
duced in CP·'/'Y·. Altogether, the space of (positive energy) 
solutions of (2.2), (2.3) carries a representation that is inde­
composable and equivalent to the triplet 

D (O,O)~[D(O, 1) Ell D (0, - 1 )]~D (0,0) . (2.5) 

The arrow denotes semidirect sum. It points towards the 
invariant subrepresentation; that is, in the direction of the 
leak. 

In Gupta-Bleuler quantization21 all three kinds of 
states are associated with quantum excitations, and all three 
contribute to the quantum field operator Af' (x). This is de­
fined in terms of creation and destruction operators acting in 
an indefinite metric Fock space: 

Af' (x) = ~ A ~(x)b (i) + h.c. (2.6) 

The "homogeneous propagator," or "reproducing kernel," 
is the vacuum expectation value 

(2.7) 

This is regarded as the distribution kernel of an operator K in 
(2.3). It has a modal decomposition 

K "( ') - "A lil( ) A lil( ') /L X,X - L:-t /1 X l' X • (2.8) 

The Lorentzian metric makes this operator nonpositive. 
Broken up into photon types, the decomposition (2.8) may be 
rendered symbolically by 

(2.9) 

The first term represents the contribution of the physical 
states. It is positive, but noninvariant because of the leak into 
gauge states. In the other terms, G stands for gauge fields and 
S for scalar-photon fields. These terms make K invariant but 
destroy positivity. It is therefore important, in order that the 
theory be unitary, thattheS, G terms do not contribute prop­
agating waves. This comes about because current conserva­
tion, a·J = ° is equivalent to 
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(J,G)- J d4xJf'(x)af'A (x) = - J d 4xA(x)a.J(x)=0. 

(2.10) 

Wave propagation between a source J and a detector J' is 
expressed by (J,KJ 'I, and ifboth J and J' are conserved, then 
only the PP terms contribute. The crucial property of K is 
thus the absence of SS terms in (2.9). 

To sum up: In Gupta-Bleuler quantization one obtains 
a covariant propagator by quantizing all modes, including 
the scalar modes. The Lorentz condition (2.4) is thus not 
satisfied by the quantum field operator: a.A #0. Neverthe­
less, the scalar and gauge photons do not interact. This may 
be seen in another way, by noting that the field equation 
oA = J and current conservation a·J = 0 give 

oa.A =0, (2.11) 

so that the scalar field a·A is a free field. 
The essential aspect of the Gupta-Bieuler triplet is dis­

played by (2.5). Physical state space occupies a central posi­
tion between two similar unphysical objects. Under Poincare 
transformations, states with helicity ± 1 leak to gauge 
states. To obtain a covariant propagator, one needs a dual set 
of states, the scalar photons, that leak to the physical states. 
The expansion (2.8) shows that the representations associat­
ed with gauge and scalar states must be equivalent to each 
other. This is why the two outer elements of (2.5) are the 
same. 

III. MINIMAL WEIGHT REPRESENTATIONS OF SO(4,2) 

The VIR's D (0,1) and D (0, - 1) of the Poincare group 
that are associated with the physical photons of QED have 
unique extensions22 to unitary irreducible representations of 
SO(4,2), the double covering of the conformal group. In the 
notation to be introduced below, these two UIR's ofSO(4,2) 
will appear as D (2, 1,0) and D (2,0,1). They have the remarka­
ble property of remaining irreducible when restricted to the 
Poincare subgroup,2.l and it is evident that they must play an 
important role in the description of the physical states of 
conformal QED. The representation D (0,0) of the Poincare 
group also has a unique extension to SO(4,2), but the triplet 
(2.5) does not. Therefore, one does not yet know what repre­
sentations ofSO(4,2) are associated with the gauge and scalar 
photons in conformal QED. 

The representations ofSO(4,2) will not be investigated 
directly, but indirectly by means of the representations of the 
Lie algebra so(4,2). A representation of so(4,2) will be said to 
be unitary if it can be integrated to a unitary representation 
of a covering of SO(4,2). For calculations a basis for so(4,2) 
will be used, denoted !L,,(3] with a,/3 = 0,1, ... ,5 and 
L,,(3 = - L"". The commutation relations are 

[L,,(3,L y<'i] = i(b(3yL"1i + b"oL(3y - b(3<'i L"y - b"yL(JI',)' 
(3.1 ) 

(0,,(3) = diag( + 1, - 1, - 1, - 1, - 1, + 1). (3.2) 

A maximum compact subalgebra is generated by Los, that 
spans so(2), and by [Lij ], i,} = 1,2,3,4, that span so(4). The 
generator Los is interpreted physically as an energy, and so 
its spectrum must be positive in all representations associat-
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ed with physical states. Interest consequently focuses on re­
presentations with minimal weights. 

Roots and weights wiIl be referred to the ordered basis 

H. = L 05 ' Hz = !(L. z + L 34 ), H3 = !(L 12 - L 34 ) (3.3) 

of a Cartan subalgebra. A weight or a root is thus labeled by 
three real numbers and written (E,i.,iz); it is positive if 
E> 0, or if E = ° andi. <0, orif E = i. = Oandiz <0. With 
this convention, a "minimal weight" wiIl have the smallest 
value of E and among the weights with the same value of E it 
wiIl have the largest value ofi. andi2' Any irreducible repre­
sentation ofso(4,2) that contains a minimal weight (Eo,i.,iz) 
is determined up to equivalence by that weight and wiIl be 
denoted D (Eo,i.,izj. All representations considered here, 
whether irreducible or not, are K-finite, which implies that 
each subspace of fixed E (every eigenspace of L05 ) contains 
only finite-dimensional representations of so(4) (see Appen­
dix A). The weight (Eo,i],iz) wiIl be said to be K-finite if 
D (Eo,i],iz) is K-finite. 

All representations directly associated with physical 
states must be unitary, but gauge theories are characterized 
by non decomposable representations in which the physical 
representations appear as (unitary) subquotients. It is impor­
tant, therefore, to know what irreducible representations can 
be combined to form nondecomposable representations. If A 
and B are representations and if we denote by 

A~B 

a semidirect sum of representations, acting in a space 
V = VA al VB with B acting in the invariant subspace VB' 
then V4 wiIl be said to leak into VB and A wiIl be said to leak 
into B. (This is because a vector initially lying in VA wiIl 
acquire a component lying in VB after some group action.) 
The notation A~B wiIl be used only for representations that 
are not equivalent to A al B. It is an elementary fact that if A 
and B are irreducible, then a necessary condition for the 
existence of a non decomposable representation A~B is that 
A and B have the same values for all the Casimir operators. Z4 

If A and B are irreducible representations with minimal 
weights W A and W B' then this condition is the same as the 
requirement that W A is related to W B by a Weyl reflection 
(see Appendix A). In this case we say that the two minimal 
weights are Weyl-equivalent. The requirementthat W A beK­
finite brings a further restriction, so that not all weights that 
are Weyl-equivalent are relevant. [In our context, at least, 
leakage into a representation that is not K-finite cannot oc­
cur.] 

Let! R (Eo,i],iz) J, EoER, denote a family of indecom­
posable or irreducible K-finite representations of so(4,2) with 
multiplicity-free minimal weight (Eo,i.,iz)' TheK-finiteness 
of R (EoJ a,iz) implies that 2i1 and 2iz are nonnegative inte­
gers. It is well known thatif(Ea,i1.iz) is dominant, then there 
is no Weyl-equivalent weight lying within the weight dia­
gram of R (Ea,i.,iz) and soR (Ea,i1,iz) cannot contain an in­
variant subrepresentation. Precisely, there is no K-finite 
weight equivalent to and higher than (Ea,i1,iz) if 

t. + iz + 2, i. > ° and iz > 0, 
Eo>. . 1 . ° . ° J. + h + , J. = or h = , 

(3.4) 
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and R (Ea,i.,i2) is irreducible whenever the inequality holds. 
It turns out that this condition is also sufficient for unitarity. 
The derivation of(3.4) as well as a demonstration ofunitarity. 
is relegated to Appendix A. 

So R (Ea,i.,iz) is unitary and irreducible as long as the 
inequality (3.4) holds. Suppose we gradually decrease Eo un­
til the limit is reached. There then appears within the weight 
diagram of R (Eo,i.,i2) a pair of weights Weyl equivalent to 
W A = (Ea,i.,iz), namely, 

wB •• = U] + iz + 3,i] - !,iz - !), i.,i2 > 0, (3.5) 

or, if either i] or iz equals zero, 

W B •2 = U. + i2 + 3,i - 1,0), i = i. + iz . (3.6) 

There is thus an opportunity, but no assurance, for 
R (Eo,i];i2) to become indecomposable. 

It will be shown in Sec. IV that wheni. = i2 = s/2 > ° 
and the limit 

E=i.+i2+2 (3.7) 
is reached, then there does indeed exist an indecomposable 
representation A~B where A and B have minimal weights 

W A = (s + 2,s/2,s/2), W B = (s + 3,s/2 - 1,s/2 -!) . 
(3.8) 

Representations of this type can be associated with "current 
type gauge fields." 

When Eo is decreased further, below (3.4), then 
R (Eo,i.,iz) again becomes irreducible (although nonunitary) 
unless Eo is integral. But when Eo reaches the values 

Eo = i. + iz + 3 - n, n.;;;minPi.,2izJ (3.9) 

then a Weyl-equivalent weight 

W B.1l U. + iz + 3,i. - n/2,iz - n/2) (3.10) 
appears within the weight lattice of R (Ea,i.,iz) and so there 
is again an opportunity for an indecomposable structure 
within R (Ea,i. ,iz). Representations of this type may be asso­
ciated with "current type gauge fields of order n." 

A qualitatively different phenomenon occurs when Eo 
reaches the value 

Eo=li.-izl+1. (3.11) 
At this point another Weyl-equivalent weight appears above 
(Eoi.J2): 

(3.12) 

wherei> U < ) is the greater (lesser) of the pair! i], iz J . In the 
special case when i1 = iz = s/2 > 0, we obtain the following 
set of K-finite Weyl equivalent weights when Eo reaches uni­
ty: 

WA = (l,s/2,s/2), 

wB,s = (s + 3,0,0), 

We = (3,s/2,s/2), 

W D = (2,s/2 + !,s/2 - !), 

WE = (2,s/2 - i,s/2 + !). 
Thus, we may have, for example, 

[D (2,s/2 + 1,s/2 - i) al D (2,s/2~D (l,s/2,s/2) - !,s/2 + m. 
I t will be shown in the next section that this structure does, in 
fact, occur and describes "gradient type gauge fields." 
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IV. CONFORMAL FIELDS 

The manifestly covariant 6-cone formalism was invent­
ed by Dirac2 and developed by Mack and Salam3 and many 
others. It is sufficiently well known that detailed explana­
tions can be omitted. The main point is that the action of 
SO(4,2) in Minkowski space is linearized by introducing two 
extra coordinates that are subsequently made redundant by 
a constraint and a projection. 

In R 6 introduce coordinates (ya ), a = 0,1,2,3,4,5, and 
the pseudo-Euclidean metric tJ defined by tJ(y) y2 YaYa 

y~ - y2 + y~. Note that y stands for ( Y I' Y2, Y3' Y 4) in this 
and subsequent sections, and y2 = yi + y~ + y~ + y~. The 
6-cone is the subset defined by y2 = 0; it is, of course, five­
dimensional. Reduction to four dimensions is achieved by 
projection; that is, by fixing the degrees of homogeneity of all 
the fields. The resulting projective cone can be identified 
with compactified Minkowski space. [The projective cone is 
the homogeneous space SO(4,2)/H ®Z2' where H is the 11-
parameter Weyl group.] 

The field that will be studied in greatest detail in this 
paper is the electromagnetic potential. The traditional ap­
proach associates this with (the restriction to y2 = 0 of) a 
vector field on R 6. Except for equivalent spino rial formula­
tions, this seems to be the only one that has been investigat­
ed. In this section it will be useful to widen the scope some­
what and deal with symmetrical tensor fields of arbitrary 
degree. In order to avoid cumbersome indices, a set (za ), 
a = 0,1,2,3,4,5, of auxiliary variables will be introduced, 
and the symmetric tensor field h with components ha ... will 
be replaced by the polynomial 

tP(y,z) = ha, .. a , (y)za, ",za, . (4.1) 

The degree of homogeneity iny will be denoted N; thus 

NtP = NtP, iztP = stP , (4.2) 

N y.Jy, iz-z·Jz . (4.3) 

The number s, sometimes identified with spin, is a nonnega­
tive integer. The number N is real and, in the most important 
cases, a negative integer. The fields may be multivalued on 
the cone, and are thus to be understood as sections of a line 
bundle over the cone, the bundle being determined by N. 

Wave equations, subsidiary conditions, etc., must be 
expressed in terms of operators that are defined intrinsically 
on the cone. An intrinsically defined differential operator 
acts on functions over R 6 in such a way as to leave invariant 
the subspace offunctions that vanish on the cone. Thus, if D 
is an intrinsic differential operator, then there is another op­
erator D' such that Dy2 = y2D '. It will be convenient to set 
;i1 = 0 also, and consider operators that are intrinsic to 
y2 = ;i1 = O. Invariant, intrinsic operators are sums of pro­
ducts of the following: 

Tr =y·z J; - (2iz + d + l)y·Jz , (4.4) 

Div = y·z Jy ·Jz - z.Jy y·Jz , 

Grad=y.zJ; -(2N+d+ l)z.Jy. 

(4.5) 

(4.6) 

The parameter d is equal to 3 in the case of present interest. 
More generally, d is the number of space dimensions, y2 = 0 
is a cone in Rd + 3 , and the conformal group is SOld + 1,2). 
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This simple generalization will save the labor of repeating 
the whole discussion when the case d = 2 comes up later. 

The Casimir operators of sold + 1,2) can be expressed 
in terms ofTr, Div and Grad. In particular, 

Q=frLa/3La/3 =N(N+d+ 1)+iz(iz+d-l)-2Div. 

(4.7) 

Thus, for fields that satisfy the subsidiary condition 
Div tP = 0 (divergenceless), Q is fixed by the degrees Nand s. 
If Tr tP = Div tP = 0 and N,s are fixed, then all the Casimir 
operators reduce to multiplication by constants. It some­
times happens, for the most degenerate representations, that 
other elements of the enveloping algebra are fixed. Examples 
are 

O.l,···· = af3yD/.lV'" L L 
-t uf3 YD' (4.8) 

that may vanish if d = 2 and may reduce to a multiple of Dn' 
ifd = 3, and 

C ~/3-LayLY/3 + L/3yLya {= [ - 4/(d + 3)]QtJa/3 J . (4.9) 

The values given in parenthesis are the only eigenvalues pos­
sible. One has, up to a numerical factor, 

L ('"V'"('"v ... 

a: [2 Div + (d - W + (2iz + d - 1)(2N + d + 1)] Div 

- 2 [ z·y a; - (2N + d + 1) z.Jy ] Tr 

+ 2iz(iz + d - I)(N + I)(N + d). (4.10) 

Therefore, ifTr and Div vanish, then (4.8) cannot vanish 
unless either s = 0 (trivial case) or N = - I or N = - d. 
The possibility that Cor C ' may be fixed will not be explored 
systematically, but it will be discussed later on a case by case 
basis (see the end of Sec. V). 

Wave equations 

The only candidate for a second order wave operator on 
the cone is J;, and this is intrinsic only if2N = I - d, as may 
be seen from Eq. (4.6). More generally, it is easy to check that 
(J;)k is intrinsic only if it acts on fields that are homogeneous 
of degree N = k - !(d + 1) in (ya ). In particular, for d = 3, 
J; is intrinsic if N = - 1 and (J;)2 if N = O. For d = 2, J; is 
intrinsic if N = -! and (J;)2 if N = !. 

Subsidiary conditions 

The action ofso(d + 1,2) on h is highly reducible even if 
N is fixed and the wave equation (when it is applicable) is 
imposed. To improve on this situation, one imposes subsi­
diary conditions on h: transversalitY,Yaha ... = 0; diver­
gencelessness, J aha... = 0; tracelessness, haa... = O. In terms 
of tP(y,z) these conditions read y·Jz tP = 0, Jz ·Jz tP = 0, and 
if;tP = 0, respectively. If y2 = ;i1 = 0, then the trace condi­
tion becomes redundant, and the other two take the form 

TrtP=O (yaha ... =0), 

Div tP = 0 (YaJ/3h/3 ... - JaY/3h/3 ... = 0) . 

(4.11) 

(4.12) 

The space of solutions of(4.11), (4.12) and the wave equation 
(when applicable) can sometimes be partially reduced by rec­
ognizing the existence of certain invariant subspaces. These 
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invariant subs paces are not invariantly complemented; they 
are therefore associated with indecomposable representa­
tions and with gauge theories. 

Gauge fields 

There are two main types. "Current type" gauge fields 
are of the form tP = y·zA, where A is a polynomial in (za)' 
Equations (4.11), (4.12) give these restrictions on A: 

Tr A = 0, [Div + N + n + d + I]A = 0. (4.13) 

Now there are several possibilities. If Div A = 0, then 
(N + n + d - l)tP = 0. Such fields will be called first-order 
(current type) gauge fields. They appear as gauge photons in 
de Sitter electrodynamics, and in connection with the con­
formal electromagnetic current. Alternatively, A may also 
be a current type gauge field, A = (y.z).2' or tP = ( Y·Z)2.2'. In 
general, a (current type) gauge field of order k has the form 
tP = (Y'Z)k .2', with Tr.2' = Div.2' = 0; it satisfies the subsi­
diary conditions (4.11), (4.12) only if N + s + d = k. Evi­
dently, k(s so that N + d(O, and the wave equation is not 
applicable to current type gauge fields. 

If one should want additional justification for calling 
these fields gauge fields, then it may be pointed out that a de 
Rham type cohomology can be built up, starting with the 
notion that an "exact" field is the form (y·z)A and a "closed" 
field is one that satisfies Tr tP = 0. This becomes particularly 
evident after performing a Fourier transformation. There is 
an application ofthis notation in connection with the confor­
mal currents. 

"Gradient type" gauge fields are of the form 
tP = Grad A. Equations (4.11), (4.12) impose constraints on 
A: 

Tr tP = Grad Tr A + (n - N)[4 Div - (2n + d + 1) 
X(2N + d - 1)]A = 0, (4.14) 

Div tP = Grad(Div + n - N)A = 0. (4.15) 

Again, there are several possibilities. If Tr A = Div A = 0, 
then (N - n + 2)tP must vanish. In this case tP = Grad A will 
be called a first-order (gradient type) gauge field. Such fields 
appear in conformal electrodynamics and also in de Sitter 
electrodynamics. Alternatively, A itself may be a gauge field. 
It would be straightforward to classify all possibilities. 

If tP = Grad A is a vector field (s = 1), then N = - 1 
and the wave equation J~ tP = ° makes sense if d = 3. In this 
case A is of degree zero in (ya) as well as in (za)' and must 
satisfy the equation 

(4.16) 

This is the gauge field that appears in conformal QED. 

Gauge fields and representations of so(4,2) 

The appearance of gauge structures for fields with cer­
tain specific degrees of homogeneity is related to the inde­
composable representations conjectured in Sec. III. The ex­
istence of some of those representations will now be 
demonstrated by actual construction. 

Consider the special field 25 

tPo=y":-SM(TJ), TJ=y+z-z+y, (4.17) 
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y+ =Y5+iyO' Z+ =Z5+izO' (4.18) 

where M is an s-linear, symmetric, traceless form. This field 
satisfies all the subsidiary conditions; in fact 
y·Jz tPo = Jy ·Jz tPo = J;tPo = 0. In addition, tPo is annihilated 
by the lowering operators LiS + iL iO , i = I, ... ,d + 1; see Ap­
pendix A. The action of the Lie algebra on tPo therefore gen­
erates a module on which tPo is cyclic and of minimal weight. 
The minimal weight is (Eo,s/2, s/2) for d = 3 and (Eo,s) for 
d = 2, with Eo = - N. It was found in Sec. III that the high­
est value of Eo for which this module can become indecom­
posable is Eo = s + d - 1 (s;;. 1), or N + s + d = 1. This is 
precisely the value of N for which first-order current type 
gauge fields appear. A straightforward calculation confirms 
that the representation generated from tPo is 

D(s + 2,s/2,s/2)_D(s + 3,(s - 1)12,(s - 1)/2) (4.19) 

if d = 3, and25 

D (s + l,s)-D (s + 2,s - 1), s;;' 1 , (4.20) 

if d = 2. The invariant subspace consists of fields of the form 
tP = y·zA. (Of course, the ground state tPo is not of this form!) 

The next lower value of Eo at which an indecomposable 
representation can exist was found (Sec. III) to be at 
Eo = s + d - 2, s;;.2, or N + s + d = 2. This is the value of 
N for which second-order current type gauge fields appear. 
The representation would be 

D (s + l,s/2,s/2)-D (s + 3,s/2 - I,s/2 - 1) (4.21) 

ford = 3andD(s + l,s)_D(s + 3,s - 2)ford = 2; however, 
whether this is actually realized in the space generated from 
tPo has not been checked. Similar representations are expect­
ed to be associated with current type gauge fields of order 
k(s. No physical applications are known for k > 1. Figure 1 
illustrates the general case. 

Something qualitatively different happens at Eo = 1, 
for at this point other elements of the Weyl group, and other 
equivalent weights, begin to playa role. For d = 3 and s = 1 
the weights equivalent to (q,!) and inside the weight lattice 
are (2,1,0), (2,0,1), (3,!,!), and (4,0,0). For d = 2 and s = 1 the 
weights equivalent to (1,1) and inside the weight lattice are 
(2,1) and (3,0). The field tPo has the weight (I,!,!) if d = 3 and 
( 1,1) if d = 2, provided M is linear and N = - 1. This is just 
the value of N for which first-order gradient type gauge fields 
should occur. A straightforward calculation shows, how­
ever, that the space generated from tPo is irreducible! What 
happens in this case is that there are indeed nondecomposa­
ble representations involving the several equivalent minimal 
weights, but this time tPo is not cyclic. Only the invariant 
subspace is generated from tPo. Indeed, tPo is a gradient type 
gauge field in this case: 

tPo = y ~ 2M·TJ = z.Jyy ~ IM.y a: Grad(y ~ IM.y). (4.22) 

A nondecomposable representation is generated from 

(tf/ op)ij = y:;: 2(yiZj - YjZi)' i J = I, ... ,d + 1. (4.23) 

For d = 2, these fields carry an irreducible representation of 
so(2) E!) so(3) including the weight (2,1). For d = 3 the self­
dual and anti-self-dual parts are associated with (2,1,0) and 
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FIG. I. The principal reduction points for), =)2 = s/2 > O. The planes of 
reflection are indicated by dashed lines and equivalent weights are connect­
ed by dotted lines. If the lowest weight (on the line), +)2 = s) is w .. = (Eo,s/ 
2,s/2), then the first reduction point occurs at Eo = s + 2 with equivalent 
weight wB., = (s + 3,(s/2) - (1/2),(s/2) - (1/2)). The nth (n<;;s) occcurs at 
Eo = s + 3 - n with equivalent weight wB,n = (s + 3,~ (s - n),~ (s - n)). 
The weight labeled WB,'+, is Weyl-equivalent to (2,s/2,s/2) but it is not K­
finite. The weight WA = (l,s/2,s/2) has four K-finite equivalent weights 
W B., = (s + 3,0,0), We = (3,s/2,s/2), W D = (2,(s/2) + (1/2),(s/2) - (1/2)), 
and WE = (2,(s/2) - (1/2),(s/2) + (1/2)). 

with (2,0,1). The space generated from (4.23) includes the 
space of gauge fields generated from (4.17) as an invariant 
subspace, and the complete representation is 

[D (2,1,0) EIlD (2,0,1)]~D (I,H) 

when d = 3, and 

D (2,1)~D (1,1) 

whend = 2. 

(4.24) 

(4.25) 

Our investigation of alternate gauge structures ends 
here, since those that are of direct interest to electrodynam­
ics have already been described. To sum up, two possibilities 
are offered for conformal electrodynamics, the representa­
tion (4.21) with s = 1, and (4.24). The first will tum out to be 
relevant in connection with the currents. The other is a very 
strong candidate for describing the electromagnetic field, for 
two reasons. Since N = - 1, the wave operator a; is avail­
able to form an invariant action and covariant wave equa­
tion. The representationsD (2, 1,0) andD (2,0,1) that appearin 
(4.24) are precisely those representations ofSO(4,2) that re­
main irreducible when restricted to the Poincare subgroup. 
[Two possibilities are available for de Sitter space electrody­
namics also. In another paper it will be shown that both of 
these appear when (4.24) is restricted to SO(3,2).] There is 
also a third possibility, pointed out by Dirac. 2 Conformal 
photons may be described by a field strength; then one is 
dealing with [D (2, 1,0) Ell D (2,0,1 )-+D (3,!,~).] 

The representation (4.24) contains two parts of the 
Gupta-Bleuler triplet of conformal electrodynamics. To dis­
cover the extension to the full triplet, including the represen­
tation associated with the scalar photons, that is needed to 
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carry out conformally invariant quantization, we shall cal­
culate the (homogeneous) propagator. 

V. HOMOGENEOUS PROPAGATORS 

In Sec. II the original Gupta-Bleuler quantization 
paradigm was described. All components of All (x) were 
quantized; that means that the set of one-particle states (in­
cluding all the ghosts) transforms as the direct product 
D 4 ® D (0,0), where D 4 is the finite-dimensional vector repre­
sentation that is trivial on the translations. In fact, this direct 
product is equivalent to (2.5). The homogeneous propagator 
was then defined by (2.7) and can be evaluated subsequently. 
The result is thatK!'v (x,x/) = o!,vD (x,x/), whereD (x,x/) is the 
propagator for the scalar field and thus for the representa­
tion D (0,0) ofthe Poincare group, while (0,,,,) can be regarded 
as the propagator for D 4 • A guess based on analogy would 
lead directly to the propagator (5.14) for conformal QED. 
However, a more systematic approach is worthwhile. 

Return to the context and notations of Sec. IV. Let the 
degrees N,s of the field, in (Y,,), resp. (z,,), be fixed. Set 
Z2 = y2 = O. The homogeneous propagator K is a distribu­
tion in y,z and y' ,z/ that is homogeneous of degree N in (y" ) 

and in (y;,), a polynomial of degree sin (z,,) and in (z;,), and 
invariant under the action of sold + 1,2). The most general 
ansatz is 

K "c ( ')N-a-b( ,)s-a-b[ /, ]a[ / ']b = L.., ab y.y z,z y·z y·z y·z y ·z . 
a,b 

(5.1) 

The sum is over a,b = 0,1,. .. and the coefficients Cal> are real 
numbers to be determined. The factor (Y.Yl" a I> is a dis­
tribution and needs to be defined. When s = 0, then the pro­
pagator is 

(2y.y')N = (YY')" Ie· ,cl/. .V 'e I.V( y.y) , (5.2) 
L 

where C L-'
V is a Gegenbauer polynomial and 

Y+=Ys+IYo=Ye it
, y=Yy, 7=t-t'. (5.3) 

This is a Fourier expansion in which the L th term corre­
sponds to the eigenvalue L - N of Los, and the lowest value 
of the energy ( = Los) is - N. The distributions (y.y').\' " h 
must be understood in this sense, so that K will be the propa­
gator for a representation in which the energy has a lower 
bound. That lower bound is - N - s in general (Appendix 
C), but a special choice of the coefficients in (5.1) may make it 
higher. 

"Massive" representations of so(4,2) are those minimal 
weight representations for which the inequality (3.4) holds, 
so that no invariant subs paces can occur. [Massive represen­
tations of so(3,2) are those D (Eo,S) for which Eo > s + 1.] 
Hence D (Eo'},,}2) is massive if the weight (EO'}I,}2) lies 
above the first reduction point. Recall that, in this case, 
D (Eo'}]>}2) is irreducible. For such representations the free 
fields, and therefore also the homogeneous propagator, satisfy 
the subsidiary conditions. Ordinary massive vector fields, 
transforming irreducibly under the Poincare group, furnish 
the standard analogy. The fields satisfy the divergence con­
dition a·A = O. After four-dimensional Fourier transforma-
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tion,Afl (P) = Ff Afl (x), this reads p.l = O. The propagator 
becomes 

(5.4) 

andpflKflv =0. 
The first problem is to determine K for the "massive" 

case. The subsidiary conditions are Tr K = 0, Div K = 0, 
with Tr and Div defined by (4.4) and (4.5). These are solved in 
Appendix B. The result, for s = 1, is 

K = (y,y')N - 1 I y.y' z·z' - y·z' y'.z 

+ [(I-N)/(N +d)]y·zy'.z'J. (5.5) 

A close look at this function gives yet another method for 
discovering nondecomposable representations and gauge 
structures. 

Current-type gauge theory 

The minimal energy in the Fourier expansion of (5.5) is 
Eo = - N. The minimal weight, in the case d = 3, is (Eo'!'~). 
Both of these statements are proved in Appendix C. As Eo is 
decreased, gauge phenomena are expected as Eo reaches the 
limit set by (3.4); that is, as Eo reaches the value 3, or 
N = - 3 = - d. This is revealed by (5.5) since the coeffi­
cientofthe last term blows upatN = - d. The analogy with 
(5.4) as m 2 is decreased to zero is striking and illuminating. 

When Eo = - N = d there is only one invariant propa­
gator that satisfies the subsidiary conditions. It is obtained 
by taking the limit of (N + d )K and is proportional to 

Kg+ = (y.z)(y.y')-d-l(y'.Z'). (5.6) 

But the fields that contribute to the factorization 

Kg+ = I ¢(y,z)¢*(y',z') (5.7) 

"' 
are all gauge fields of the form tP = y·zA. To retain the full 
non decomposable representation one takes the limit (q fixed, 
real) of 

K - [(1 - N)I(N + d) + q]K:+, 

K:+ =y.z(y.y')N-l y'.z' . (5.8) 

This yields the following propagator for N = - d: 

K q+ = (y.y') -d--l [y.y' Z.Z' - y.z' y'.z] - qKg+ .(5.9) 

The constant q is arbitrary and is ultimately fixed by conven­
ience. Analogous treatment of (5.4) gives the familiar result; 
thus, in the Feynman gauge (q = 0), kflv = 0flV O(p2). Spec­
tral decomposition of(5.9) into products of fields, which will 
reveal the Gupta-Bleuler triplet, will be carried out in Sec. 
VI. 

Gradient-type gauge theory 

Consider the propagator (y.y')''' + I for a field A with 
s = 0. The propagator for the first-order gradient type gauge 
field tP = Grad A is 

Grad Grad'( y,y')N + 1 I y.y' z·z' + N z·y' z'·y 

- [2N /(2N + d + 1)]y,zY',z'J . (5.10) 

The operator Grad was defined by (4.6). According to a re­
sult of Sec. IV, this propagator satisfies the subsidiary condi­
tions only if N = - 1, in which case it is 
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K ( ')-2 f " " g _ = y.y l y.y z·z - z·y z·y 

+ [2/(d - 1)]y.zy',z'J . (5.11) 

Now this is exactly the same as (5.5) when N = - 1. Thus, in 
the limit N-+ - 1, the propagator K given by (5.5) propa­
gates only gauge fields. This time the gauge fields are of gra­
dient type. To retain the full, nondecomposable representa­
tion one must take the limit of 

(N+l)-I(K:_K)' K:_ = Grad Grad'(y.y')N+ I ,(5.12) 

asN tends to - 1. With the addition of an arbitrary mUltiple 
of Kg the result is 

K q- = (y·y'r- 2 (z.y' z'·y - [(d + I)/(d - 1)2] y·z y',z'J 

+ qKg_ . (5.13) 

With one notable exception, K t does not factorize as 
in (y.y') - v z·z', so the direct product structure that was dis­
cussed in the beginning of this section does not appear. The 
one exception is that, when d = 3 only, the choice q = 1 
leads to K \- = D with 

D = (y.y') I z·z' (d = 3, Feynman gauge). (5.14) 

This is the preferred propagator for conformal electrody­
namics. The Gupta-Bleuler triplet will be found by inspec­
tion of its modal decomposition, in Sec. VI. 

The subsidiary conditions 

The massive propagator (5.5), and the gauge field prop­
agators (5.6) and (5.11), all satisfy the subsidiary conditions, 
Tr K = Div K = 0. However, the gauge field propagator 
K ~ I that was needed in (5.8) to obtain the physical propaga­
tor K q+ satisfies only Tr K ~\ = 0. Consequently, 

Tr K / = 0, but Div K qL;;fO. (5.15) 

For very similar reasons, 

(5.16) 

This has implications for the scalar states as will be seen 
below. 

Let us now study the operator (4.8), in the case of gradi­
ent type gauge fields, N = - 1 and s = I. The ground state 
tPo of (4.17) is annihilated by C'f] , and so is the gauge field 
propagator (5.11). As for the physical ground state (4.23), 
one can verify that (when d = 3) 

(C,o + SL"O) tP,,; ~O, (Clf] - SL"O) tPop ~O. (5.17) 

Here tP,,; (tP,,; ) is the self-dual (anti-self-dual) part of tPop , and 
tP~O means that tP is a gauge field. The states tP,; and tPo; are 
the ground states of D (2,1,0) and D (2,0, 1), respectively, and 
(5.17) shows that neither of these representations can be ex­
tended to the other; that is, D (2,0,1 )-+D (2,1,0) does not exist. 
It is very interesting that, in spite of this, both leak to the 
same representation D (I,!,!), and both must be included in 
the quantization. There is no invariant propagator that 
propagates one without the other. 

As for (4.9), one may check that C :,{3' applied to the 
physical ground state (4.23) is a gauge field, 

(5.18) 

Hence C ;'0 vanishes on the physical (quotient) representa-

Binegar, Fronsdal, and Heidenreich 2835 



                                                                                                                                    

tions. It is well known that C ~f3 - 2fJaf3 vanishes inD (1,0,0) 
and that C ~f3 - fJ af3 vanishes in D (!,O), representations of 
SO(4,2) and SO(3,2), respectively. 

VI. CONFORMAL GUPTA-BLEULER TRIPLETS 

It is instructive to examine, in somewhat greater detail, 
the cancellations between terms of order (N + d)-I in (5.8). 
The q term is irrelevant, so let q = 0. The second term has a 
decomposition in terms of gauge fields, Eq. (5.7), that may be 
abbreviated as 

I-N v I --K' =6- ~gg*, 6=N+d. 
N+d H L 

(6.1) 

Similarly, the massive propagator (5.5) has a decomposition 

K= Ipp* +6-
1 I cpcp * . (6.2) 

p '" 

Since the 6- I terms cancel, cp - g must be of order 6, and 

K_I-NKN 
N+d g+ 

Ipp* + I (gs* +sg*) + 6 Iss*, 

(6.3) 

where s = (cp - g)/6 remains finite as 6-0. This field that 
has been denoted s, is the third member of the Gupta-Bleuler 
triplet. It is easy to see, in fact, that, under the action of 
so(4.2), s leaks to p and p leaks to g. The important point is 
that ss* terms are of order 6 and disappear in the limit. Com­
pare Eq. (2.8) and the discussion that follows it. Naturally, 
this rough sketch is not intended to prove anything. 

Recall that (6.2) satisfies the subsidiary conditions; 
therefore so do the fields cpo The gauge fields g satisfy the 
subsidiary conditions at 6 = ° only. Since s = - ag/a6 at 
6 = 0, it follows that the scalar fields may not satisfy the 
subsidiary conditions: Tr s#O and Div s#O. Now the ab­
senceofss* terms from (6.3) can be tested simply by verifying 
that Tr K and Div K are gauge fields in the second variable. 
Thus, in the case of the propagator D = (y.y,)-I Z'Z', one has 
Tr D = (y.y')-I y.z' = z'.ay ' Iny·y'. However, we prefer a 
more detailed proof that gives specific information about the 
nature of the scalar fields. 

Current-type gauge theory 

The propagator (5.9), with q = 0, is dissected in Appen­
dix C, and only the results will be quoted here. The propaga­
tor is considered as the integration kernel of an operator, and 
spectral resolution of this operator by projection to the ei­
genstates of L05 yields the following. 

The lowest energy is Eo + d, and the projection of K 0+ 

on this subspace is 

(K 0+ )o( y,z; y' ,I') = Pot y,z). p~( y' ,I') , (6.4) 

Po(y,z)=y:;:d-I1}, 1}=Y+z-z+y. (6.5) 

The field Po is annihilated by the lowering operators and is an 
eigenstate for a true minimal weight. This vector is not cyclic 
for the entire space of fields that occurs in the spectral de­
composition of K 0+ • 

The projection of K 0+ on the next higher eigenspace is 
found to contain a contribution of the form 
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so(y,z) g~(y',z') + go(Y,z)s~(y',z'), with 

sot y,z) = y ~ d - 2 Y.1}, got y,z) = y ~ d I y·z . (6.6) 

The field So is cyclic for the whole space 7/' of fields that 
occur in the spectral decomposition of K 0+ , The field Po 
generates an invariant subspace 7/ of 7/' and go generates an 
invariant subspace '}Y'g of 'r. The weights of so, Po, and go are 
the minimal weights of 'Y' / 'Y, ')//" / 'Y g' and 7/ g , respective­
ly; when d = 3 they are (4,0,0), (3,!,!) and (4,0,0). The Gupta­
Bleuler triplet is therefore 

D (4,0,0)_D (3,!,!)-D (4,0,0) . (6.7) 

[When d = 2, the triplet is D (3,0)_D (2,1 )-D (3,0).] 

As expected, there are no ss* terms in K 0+ ; therefore, to 
assure that onlyD (3,H) propagate between curents, it is suffi­
cient that 

(gJ)= f dy(y"A)*j" = f dyA*Y:i=O. (6.8) 

The current must be transverse, Y:i = 0, but it need not be 
divergenceless. [Actually, the terminology is misleading, for 
in the physical applications the roles of fields and currents 
will be reversed; see Sec. VII,] 

As was pointed out in Sec. V (last section), Tr K 0-+ = 0, 
so this subsidiary condition holds in 7", If 
I/I( y,z) = z" h" (y), then 

y" h" = 0, all fields h in 7/' . (6.9) 

On the other hand, Div K Of #0, so the subsidiary condition 
Div 1/1 = ° holds only in 7/. This is therefore the Lorentz 
condition. In terms of h, 

Ya a·h - aa y·h = ° (Lorentz condition, current type), 
(6.10) 

The fieldy" a·h - a" y·h is a gauge field, for (6.9) implies 
that a" y·h =Yn A. The map I/I-Div 1/1 is therefore a map of 
'1 " onto '1 'g with kernel 7 ". The second order Casimir oper­
ator Q is the same as - 2 Div in 'Y' [Eq. (4,7)]; therefore, 

Qr'= '1 'g, Q'1'=O, (6.11) 

and the Casimir operator is nondiagonalizable on '1 ", 

Gradient-type gauge theory 

The analysis of the propagator K q- , Eq. (5.13), is a good 
deal more complicated. The details are in Appendix C. The 
results are as follows. 

The lowest energy is 0. The projection of K 0 on this 
eigenspace is 

(K () )0 = -I/Iol/l~, l/Io(Y,z) = y + I z+ . (6.12) 

This 1/10 is interesting. Locally, it is a gauge field, 
1/10 = Grad A, but with A = In y +. The term (6.12) is there­
fore not totally negligible; more about this later. Anyway, 
the space generated from 1/10 consists entirely, with the sole 
exception of 1/10 itself, of true gauge fields. This space may be 
denoted '}Y'I' 

The next energy is 1, and the projection of K 0 on it is 

(K 0- 1)1 = 2("'g·"'~ + "'s·"':), (6.13) 

"'s = y:;:2yZ+, "'g = y:;:21}=Grady~ly. (6.14) 
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The field tP, is cyclic for the whole space 'Y" of fields that 
contribute to K 0- . The field "'g is a gauge field and generates 
an invariant subspace 'Y'g C 'Y". 

The next energy is 2 and the projection of K 0- on it has 
the form 

(K 0- h = tPp ·tP; - 2JtP, tPi + tPg tPn tPp = y ~ 2 Y 1\ z . 

(6.15) 
The tPg are gauge fields and belong to 'Y'g. The field tPp 

generates an invariant subspace 'Y'2 of 'Y" that includes 'J/"g 

(but not 'J"'tJ. Let 'Y' = 'J/",U'Y'2' The decomposition of the 
total space 7/' is then summed up by the inclusions 
'r'::J 'Y'::J 'Y'g. Neither subspace is invariantly comple­
mented. The weights of "', and "'g are the (equal) minimal 
weights of 'Y"/7/ and 'Y'g. The quotient 'r /'rg has two 
minimal weights, the weights of tPo and tP p' When d = 3 the 
total representation is the following "augmented triplet:" 

[D (2,1,0) Ell D (2,0, 1) 1. ....... 
D(l'~'!)~ ,_____D(I.!,!). (6.16) 

D(O,O,O) 

For d = 2 one has instead 

/D(2,1)" 

D(I,I)" /1)(1,1). 
'f) (0,0) 

(6.17) 

The representations in the middle are found on 'Y' / '}/~ g . 
There are several reasons for setting the trivial repre­

sentation apart from the physical representation. The propa­
gator K 0- is a positive-definite operator on 'Y'2/'Y'g, on 
which the group action is the physical representation 
D(2,1,0)EIlD(2,0,1) or D(2,1). It is negative on 'Y',/'Y'g, on 
which the group action is trivial. This may be seen by in­
specting (6.12) and (6. 15). Therefore, the space of physical 
states is 'r2/'Y'g only. In addition, the zero energy state tPo 
is, strictly speaking, not a gauge field, as was pointed out 
below (6.12). 

The representation (6.16) is (algebraically) equivalent to 
the direct product representation D6 ® D (1,0,0) ofSO(4,2), as 
was mentioned in connection with (5.14). The representation 
(6.17) ofSO(3,2) is not equivalent to D5 ® D (1,0), since this 
direct product contains (6.17) as well as D (2,0). [D6 and Ds 
are the six- and five-dimensional natural representations of 
SO(4,2) and SO(3,2).] [If d = 3, then Q 2 vanishes in the direct 
product D6 ® D (1,0,0), since in that case Div Div vanishes. If 
d = 2, then the minimal polynomial for Q in D5 ® D (1,0) is 
Q 2(Q + 2). The fact that Q 2 = 0 on 'Y" is revealed by 
(az .ay - a; y·az ) K q- = 0 (for d = 2).] 

There are no ss· terms in K q- , and so, to ensure that 
only the physical states propagate between currents, it is al­
most sufficient that 

(gJ) = J dy (Grad A )~ja = O. (6.18) 

This will be shown (in Appendix D) to be equivalent to a 
conservation law for j. The reason for the qualification "al­
most" is that (6.18) does not eliminate the contribution of the 
zero-energy state. The current will be discussed in the next 
section. 
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As was pointed out in Section V, Eq. (5.16), Tr K q- #0 
and Div K q- #0. Therefore, Tr tP = Div tP = 0 holds only 
for physical and gauge photons. More precisely, Tr tP = 0 in 
'Y' 2 (but Tr tPo = const), while Div tPo = 0 in ,// = 'Y' ,u'Y' 2 
(thus Div tPo = 0). Since the zero energy state is unphysical 
(having negative norm), the Lorentz condition must be 
Tr tP = 0 rather than Div tP = O. If tP( y,z) = Za aa (y), then it 
is 

y·a = 0 (Lorentz condition, gradient type). (6.19) 

The scalar (i.e., spinless) field y·a represents the scalar pho­
tons and the zero energy state. 

It should be noted that the wave equation 

(6.20) 

holds in 'P". Applying Grad to y·a, one confirms, using 
(6.20), that Div tP = 0 in 7/"2' The map tP-Div tP maps '//"' 
onto 'rg , and (6.11) holds in this case also. 

VII. CONFORMAL QED 

The preparations have now been completed. It is clear 
that the gradient type gauge theory is the most reasonable 
candidate for application to electrodynamics, because (a) 
there is a second-order invariant wave operator in this case 
only and (b) the center of the triplet (6.16) is precisely (except 
for the additional trivial representation) the representation 
that, when restricted to the Poincare subgroup, describes 
massless particles with helicities + 1 and - 1. In this sec­
tion d = 3, of course. 

Free wave equation 

There is no conform ally invariant wave operator of sec­
ond order that is also gauge-invariant. Recall that a gradient 
type vector gauge field is of the form Grad A, where A is a 
scalar field. A gauge transformation is thus a substitution 
tP-tP + Grad A. [In this context, "gauge invariance" means 
invariance under general gauge transformations, with no re­
strictions on the gauge parameter A.] IftP(y,z) = z·a( y), then 
this is the same as 

aa -aa + Grada A . 
2 "-

Grada =Ya a - (2N + 4) aa . 

(7.1) 

(7.2) 

Since Grada commutes with Gr~d/:l' one can build a gauge­
invariant "field strength"; since Naaa/:l = - 2aaa/:l' one 
has 

fa/:l = Grada a/:l - Grad/:l aa = y" a2ar] - Y(3a2aa' (7.3) 

[The quantity aaa(3 - a(3aa is not intrinsically defined, 
since ali ( y2 A /:l ) - a (3 ( y2 A a ) does not vanish at y2 = 0; see 
Dirac. '] However,Ja/:l fa(3 is not a suitable action density. 
Another gauge invariant quantity is the completely antisym­
metric tensor 

(7.4) 

but fa/:ly fa/:ly is not even of the correct degree to serve as an 
action density. 

The simplest gauge invariant action for the free field is 
the following: 
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5t'1 = + f dy a·a
2 

Diva. (7.5) 

This is gauge-invariant because Div Grad A = O. It is a spe­
cial case (c = I) of the one-parameter family (c real) 

5t' c = + f dy aa a2(oa{3 + icMa(3) a{3' 

(7.6) 

Note that the field equation derived from (7.5) contains de­
rivatives up to the third order. 

A gauge invariant action may be convenient in classical 
electrodynamics, although gauge invariance is usually sacri­
ficed by imposition of the Lorentz condition. In quantum 
field theory it is necessary to choose a propagator, and this 
amounts to giving up gauge invariance in the action. The 
obvious choice of action, with gauge fixing already built in, is 
the unique conformally invariant action that leads to a sec­
ond-order wave equation, namely, (7.6) with c = 0: 

5t' = f dy (!aaa2a" - joa). (7.7) 

An interaction with an external source has been included. 

The current 

Though the kinetic term need not, and indeed cannot, 
be gauge-invariant in quantum field theory, the interaction 
functional must be gauge-invariant to ensure physical uni­
tarity. As was pointed out in the preceding section, this im­
plies that the integral (6.18) must vanish. It is shown in Ap­
pendix D that the necessary and sufficient conditions oni are 

(7.8) 

It is not difficult to construct field theoretical models 
that furnish examples of such currents. Thus, consider a 
spinor field X of degree - 2, with the free action proposed by 
Dirac 

(7.9) 

It is not obvious that the usual minimal substitution 
aa---+i)a - ieaa is consistent with invariance under the 
gauge transformations (7.1), but here it amounts to 

The effect of the gauge transformation (7.1) is 

(7.11) 

The unpleasant first order term in (7.2) cancels out and the 
substitution (7.10) gives the same result as aa ---+i)a - ieaa , 

that is, precisely the change that can be cancelled by chang­
ing the phase of the field X. 

The modified action 

5t' x.a = + f dy XYa Yp(Map + esf' ap)X 

yields the current 

ia = J ap YP' J a{3 = !eX[Ya 'YP lx . 
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(7.12) 

(7.13) 

The conservation law (7.8) may be written 

M a {3J a{3 = ° . (7.14) 

In fact, it should be written this way, so as to make explicit its 
intrinsic nature. When i has the form (7.13), then Y:i vanishes 
everywhere, and (7.8) reduces to a:i = O. But the intrinsic 
nature of this equation is not explicit, since a" is not defined 
intrinsically on the cone. 

It is possible, and indeed reasonable, to develop the en­
tire canonical formalism in terms of the intrinsic vector 
fields MaP' rather than the a a' The skew tensor J then 
appears as the natural object, rather than the vector j. In 
particular, the conservation law (7.14) emerges directly. In 
other words, it seems quite natural to expect that the current 
i can always be expressed as in (7.13), in terms of an antisym­
metric tensor field jr that is conserved in the sense of (7.14). 
In that case one has 

Y:i = 0, a:i = ° . (7.15) 

As was first shown by Dirac, the spin or field X is not 
directly relevant. The fields X and X + y·yA. represent the 
same physical state. This is the origin of "current gauge 
transformations." The effect of the substitution 
X-+X + y·yA. on the current (7.13) is a current type gauge 
transformation 

ia -+ ia + Ya A , 

with A a: ¢A.. This transformation must be physically unob­
servable. The effect on the interaction density a:i is to add a 
term A y·a. This vanishes ifthe Lorentz condition holds, that 
is, when a" is an external field. It will be seen below that, 
even though the field operator y·a does not vanish, it is in any 
case a free field. The density A couples to a free field only and 
has no observable effects. More will be said about this later. 

Classical field equations 

For classical field theory it is possible to maintain com­
plete gauge invariance as well as manifest conformal invar­
iance. The total action for photons and massless fermions is 
the sum of(7.6), with c = 1, and (7.12): 

f dy [!aaa
2
a" + Va"a

2
M ap a{3 

- !iY" Y/3 (Ma/3 + esf' aP)X 1 . (7.16) 

The tensor sf' was defined by (7.10). The coupled field equa­
tions are 

(7.17) 

(7.18) 

The current satisfies (7.15). The gauge may be "fixed" by 
imposing the Lorentz condition y·a = 0, without compro­
mising manifest conformal invariance. 

Quantization 

Let [a~)], i = 1,2,.··, be a set of solutions of the free wave 
equation a2aa = 0, with positive energy, such that--com­
pare (5.14)-

(7.19) 
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With the help of these solutions, define the quantum field 
operator 

(7.20) 

where band b * are destruction and creation operators act­
ing on; Fock s~ace. There is a unique vacuumAstate 10), 
annihilated by bi , and the repeated action of the b r builds up 
the whole space. The following commutation relations are 
postulated, [ bi ,bj ] = 0 = [ b r ,b j] and 

[ b b*] =D (7.21) I' ) I) • 

With these definitions one has 

Da /3(Y'Y') = (OIGa(Y) G(3(y')10) . 

This is the Gupta-Bleuler quantization paradigm. 

Quantum field theory 

(7.22) 

From now on, the field under discussion is the quantum 
field operator (7.20), but for convenience this operator will be 
denoted au (x) without the caret. The action (7.7) leads to 

ala" = in , (7.23) 

wherei" (x) also stands for a quantum field operator from 
now on. The conservation law fori, in the weak form (7.8), 
yields 

a2a2 y·a = 0 . (7.24) 

The field y·a that, according to the discussion in Sec. VI, 
describes the scalar photons is thus a free field. (As will be 
seen in Sec. VIII, y·a is a dipole ghost. What is important is 
the fact that the wave equation for y·a is unaffected by the 
interaction.) This information expresses the decoupling of 
the scalar modes and is equivalent to what was learned about 
the propagator K q- in the same section [absence of tPs tP~ 
terms in (6.15)]. Recall thaty.a = 0 is the "Lorentz condi­
tion"; the quantum field operator does not satisfy this condi­
tion, but it does satisfy (7.24), in strict analogy with the equa­
tion Oa·A = 0 in ordinary QED. Equation (7.24) shows that 
the scalar photons have no interactions. 

No attempt will be made at this point to define an S 
matrix or any other observables; this will be done after the 
theory has been translated into Minkowski space notation. 

VIII. CONFORMAL QED IN MINKOWSKI SPACE-TIME 

Resume 

Our construction of conformal QED in the manifestly 
covariant formalism may be briefly summarized as follows. 
We restrict ourselves to the simplest (Feynman) gauge. The 
Gupta-Bleuler quantization procedure (as generalized) led 
to the wave equation 

(8.1) 

where an has degree of homogeneity - 1. Gauge invariance 
leads to the conservation law 

au i" + !a2yu iu = 0 . (8.2) 

The Lorentz condition that eliminates the scalar photons 
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and thus projects onto the subspace of transverse and longi­
tudinal photons is 

(8.3) 

The longitudinal photon fields (gauge fields) are of the form 

au = Gradu A =ya a2A - 2a"A, (8.4) 

with a 2a 2A = O. Finally, one must require invariance under 
the current gauge transformation 

(8.5) 

We must now rewrite all this in the conventional, Min­
kowski notation. 

Minkowski coordinates 

Let x+ = Y4 + Ys, and introduce the inhomogeneous 
coordinates 

Xli = Yl'/x+, B = y2/X\, 11 = 0,1,2,3. (8.6) 

On the projective cone B = 0 and (xl' ,x + )=(xl' ,Ax +) for 
A -=I 0; this is a compactification of Mink ow ski space, coordi­
nated by (xl'). The electromagnetic potential is the I-form 

au dYa =A,l dxl" + (A+/x+)dx+ +AB dB. (8.7) 

(One replaces z" of Sec. IV by dYa.) The fields All' A +' AB 
are independent of x +. Explicitly, 

al' = x:;: I( AI' + 2xI'AB), 

AI' = x+[al' - xI' (a4 .+- as)] , (8.8) 

a4 = -x:;:I[-x.A+A+-(I+X2)AB]' 

AB = !X+(a4 + a5 ), (8.9) 

a5 = x:;: I[ - x.A +A+ + (1 -x2)AB]' 

A+ =y·a. (8.10) 

For the currents one has similar relations, except that the 
factor x -;- 1 is replaced by x :;: 3. 

Current conservation 

The conservation law (8.2) takes the form 

OJ + + 2a·J = 0 . (8.11) 

This is an ordinary conservation law: 

a·J'=o, J~==JI' +!aI'J+. (8.12) 

The current gauge transformation (8.5) affects only J B, so 
this component of the current must effectively decouple. 

Lorentz condition 

The Lorentz condition (8.3) becomes 

A + = 0 (conformal Lorentz condition), (8.13) 

and ( A I' ,A +,A 8 ) is a gauge field if, in addition, 

All = all A , A8 = -!DA , (8.14) 

with 02A = O. Let us now study the action and the field 
equations. 
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Field equations 

The action (7.7) takes the form 

J d 4
x (!A,l DA

" 
- 4A Ba·A + 2A+DAB 

-8ABAa -A·J-2A+JB -2ABJ+)· 

The field equations are thus 

DA
" 

+ 4al'AB = J
" 

, 

DA + - 2a·A - 8A B = J + , 

DAa =JB . 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

By setting J,I = J B = J + = A + = 0, one obtains the confor­
mally invariant spin one equations of Mayer and Bayen and 
Flato. 26 The necessity of the current J B becomes apparent as 
soon as one tries to reintroduce a source J'I to (8.16); one 
finds that the resulting system of equations will not be con­
formally invariant unless one also returns J B to (8.18). To 
find the consequences of current conservation, Eq. (8.11) or 
(8.12), take the divergence of (8.16) and combine with (8.17) 
to find that 

02A+ =0. (8.19) 

The scalar photons, characterized by A + 1= 0, are thus dipole 
ghosts, as are the gauge photons of Eq. (8.14). 

The Lorentz condition (8.13) is not satisfied by the 
quantum field operator, but one can choose initial condi­
tions such that (see Notes added in proof) 

A + 1 If! ) = 0 , (8.20) 

which implies that 

<P 11f!) = 0, <P DA+ = 2a·A + 8AB + J+. (8.21) 

Since <P is a free field, <P 1 ¢) remains zero at all times; 
hence 0 A + 1 If! ) vanishes, and the condition A + 1 If! ) = 0 is 
also preserved at all times. These conditions are conformally 
invariant, since (8.20) is the same as Ya aa 1 If! ) = 0; and Eq. 
(8.21) is the same as Ya (a2aa - ja )1 If! ) = O. 

EliminatingA B from (8.16)-(8.18), one gets 

oa·A = ~DJ + - 4J B, O<P = 0 . 

(8.22) 

(8.23) 

Recall that J B is the pure current type gauge field. Setting 
J a = 0 violates conformal invariance unless J + and JII van­
ish as well. To show that J B is, nevertheless, irrelevant, it is 
enough to define a new vector potential A ;, 
_A" + 40- l a

"
A B; thenJB disappears from (8.23), and the 

action takes the form 

J d 4
x(-!A;,OA;, +A'·j' 

+ 4A aO- 1a.J' + 2A...Ja - 2A+DAB)' (8.24) 

Variation of A B gives DA + = 20 - I a·J'. The ambiguity in­
herent in the choice of inverse of 0 is resolved by the bound­
ary condition A + 1 If! ) = o. One sees that the unfamiliar fields 
decouple completely, leaving ordinary QED. 

Conformal transformations 

Equations (8.1)-(8.3) are invariant under the SO(4,2) 
transformations 
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T/i: a __ a', a;,(Y) = An:(Ja(J(yA ), AESO(4,2). (8.25) 

This transformation law can be expressed in terms of the 
Minkowski fields All' A B, and A +, with the help of (8.6)­
(8.10) and the usual rule 

" aX(J 
A a(x) = - A(J(x). (8.26) 

ax~ 

One then finds that under an infinitesimal dilatation, 
1 + i€Ls6 

bAI, (x) = €DA
" 

(x) = - €(x·a + 1) All (x) , (8.27) 

bAa (x) =€DAB(x) = -€(x·a+2)AB(X), (8.28) 

bA+(x)=€DA+(x) = -€(x.a)A+(x) , (8.29) 

which indicates that the conformal degrees of A I' ' A B , and 
A + are, respectively, - 1, - 2, and O. Under an infinitesi­
mal special conformal tranformation 1 + ie' (L S,I - L 01' ) 

bAil (x) = [[x2(€.a) + 2(€.x)D ]151' ' 

+ 2(xl'€' - €,IX"jj A,,(x) + 2€,I A+(x), (8.30) 

bAB(x) = [x2(€.a) + 2(€.x)D] AB(x) - e' A,l (x), (8.31) 

(8.32) 

It is apparent from (8.27)-(8.32) that, while A + itself trans­
forms homogeneously under the action of the conformal 
group, it also leaks into All and that AI' ' in turn, leaks into 
A a' The indecomposable nature of the conformal vector 
field is thus manifest in this coordinate system. The invar­
iance of the "Lorentz condition" A + = 0 is also evident. The 
currents J'l ,J B' and J + transform similarly except that their 
conformal degrees are, respectively, - 3, - 4, and - 2. 
One can easily check the invariance of (8.15)-(8.18) 

There is one point that needs elaboration. Previous for­
mulations of conformal electrodynamics have imposed the 
conditionsy·a on the field andY:i on the current. With these 
restrictions the field equations and the transformations sim­
plify, since A + and J + vanish. It is perhaps worthwhile to 
repeat at this point the reason why A + cannot vanish in a 
conformal quantum field theory. The quantum field opera­
tor was defined by (7.20). [The caret on an: (y) was subse­
quently dropped.] In the sum (7.20) there is a contribution 
from the scalar photons; without such field modes it is im­
possible to construct a covariant propagator. What does not 
emerge clearly in (7.21), but what is evident in (6.3), for exam­
pie, is that the scalar photons are canonically conjugate to 
the longitudinal photons. Conformal invariance requires 
that the "longitudinal modes" be quantized along with the 
transverse modes, but this is impossible without the help of 
the scalar modes. 

Propagator 

The definition (7.20) of the quantum field operator an:' 
in terms of wave functions and a set of creation and destruc­
tion operators, can, of course, be rewritten in terms of the 
new notation introduced by (8.8)-(8.10). Equations (7.19) 
and (7.22) leads to the following homogeneous propagators 
for (A",A +,AB): 
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Dp,,(x,x') = (01 AI' (x)A" (x')IO) = Dp"D (x,x') 

= - Up,,/(x - X')2, 
and similarly 

Dp + (x,x') = (x~ - x/1)D (x,x') , 

D + B (x,x') = ~ D (x,x') , 

(8.33) 

(8.34) 

(8.35) 

D/1B = DBB = 0, D++ = 1 . (8.36) 

The fact that D + + = 1 reveals the presence of the zero ener­
gy mode; that is, the trivial representation D (0,0,0) in (6.16). 

Representations 

It remains only to clarify the group representations. 
The restrictions to the Poincare group are conjectured to be 
as follows (see Notes added in proof): 

D619 = D,--..Dc~D, , 

D(1,0,0)19 = D(O,O) , 

D(1,1I2,1I2)1.9 = D (O,O)-D (0,0) , 

D(2,1,0)19 =D(O,l), 

D(2,0,1)19 =D(O, -1). 

(8.37) 

(8.38) 

(8.39) 

(8.40) 

(8.41) 

The augmented triplet (6.16) becomes 

[D(O,l) 9D(1,0)]" 

[D (O,O)-D (O,O)]~ ____ [D (O,O)-D (0,0)] 
D, ,...,..--

=D (0,0) ® [D,-D4-D,] 

=D (O,O)_[D (0,0) ® D 4]-D (0,0) . (8.42) 

The equivalences expressed here are algebraic equivalences. 
The last expression is especially illuminating. The center 
bracket is the usual triplet (2.5). The extra scalar field on the 
left is <1>, and the extra gauge field on the right is DAB' These 
extra fields distinguish conformal QED. They play no actual 
role in the evaluation of the S matrix (except perhaps in the 
renormalization program), but they participate in the con­
struction of the indefinite metric Fock space. The larger 
Fock space is required in order that the conformal group act 
on it. 

IX. FINAL REMARKS 

1. We have formulated an action principle and quanti­
zation rules for a conformally invariant field theory, but no 
reference was made to the possibility of a physical interpreta­
tion. No conformal field theory is known that has a direct 
physical application. Masses can and must be introduced by 
hand, but this is not the only source of breakdown of confor­
mal invariance. 

To have a physical interpretation, one must decide what 
are the observables. This is very difficult to do within a con­
text in which all the particles are massless, but one may at­
tempt to begin by discussing scattering experiments. This is 
beset with well-known difficulties, but it may be possible in 
perturbation theory at least. The boundary conditions ap­
propriate to scattering are incompatible with the structure of 
the projective cone, for this space has no global causal struc­
ture27 and no "infinity." Infinity in the sense of Minkowski 
space is introduced artificially through the choice of coordi-
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nates. Massless particles interacting with other massless par­
ticles in a conform ally invariant field theory do not know 
where infinity is and therefore they do not stop interacting 
with each other as they become infinitely separated (in Min­
kowski coordinate sense). The introduction of a mass term 
m¢if; in the Minkowski space action is equivalent to adding a 
term of the form (Y4 + Ys)-'m¢if;to the conformal action. A 
massive particle therefore knows where infinity is-at 
Y4 + Ys = O---and the stage is set for describing scattering. 
Whether masses are introduced or not, it is necessary to 
choose the location of Minkowski infinity on the projective 
cone, before the conventional postulates of scattering theory 
make any sense. 28 

Conventionally, the way this is done, is to define a per­
turbative S matrix through the imposition of boundary con­
ditions of the inhomogeneous propagator. The choice 

DF (x,x') = - 2i[(x - X'2) + iE] -, (9.1 j 

exploits the global, causal (but not conformally invariant) 
structure of Minkowski space. At first sight, this expression 
may seem to be conformally invariant. Indeed, if(9.1) is in­
troduced into (8.26)-(8.29), in place of the homogeneous pro­
pagator D (x,x'), and the result rewritten in terms of the six­
dimensional coordinates, then one obtains the tensor 
operator 

DF
a /3( y,y') = iDa /3( Y'Y' + iEj-' . 

The problem is that this is not a distribution over the projec­
tive cone. (Recall that the projective cone is defined by the 
projectionYa =A.Ya ,A :;I: O. Distributions on R 6 are interpre­
table as distributions on the projective cone only if they are 
homogeneous. This problem could be solved by replacing 
the projective cone by its double covering defined by 

Ya =A.Ya' A > 0.
29

) 

2. The fact that conformal invariance is broken, by the 
causal structure and by the introduction of masses, does not 
mean that potential benefits of the conformal structure is 
lost. On the contrary, the lesson learned by the application of 
soft symmetry breaking to nonabelian gauge theories is that 
the partial preservation of symmetry by Ward-Takahashi 
identities is of great utility in renormalization. In order to 
determine whether conformal invariance (though broken) is 
especially beneficial, it was necessary first to formulate a 
conformally invariant field theory. We have seen that this 
leads to a richer ghost structure than that of conventional 
QED, but we have not yet examined the effect that this may 
have on the removal of infrared and ultraviolet divergences. 
We suggest that it may be useful to do so, and that confor­
mally invariant nonabelian gauge theories should also be 
studied in this manner. Note in this connection the appear­
ance of the zero-energy ghost, and the related result 
(01 A +(x) A +(x')IO) = 1; does this have anything to do with 
the Higgs-Kibble field and its non vanishing vacuum expec­
tation value? The reduction to Minkowski notation was 
done in the simplest gauge only: c = 0 in Eq. (7.6). In any 
other gauge the field equations contain third order deriva­
tives. It seems unlikely that this improves the ultraviolet be­
havior, but it is worth looking into. See in this connection 
Ref. 30. 
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3. The techniques developed in this paper will be ap­
plied to a study of conformal gravity (see Notes added in 
proof)· 

4. The construction of unitary representations of semi­
simple groups on quotient spaces is being rapidly developed 
by mathematicians; see especially papers by Blattner and 
Rawnsley,3' Schmid and Wolf,32 and Rawnsley, Schmid, 
and Wolf,33 and Schmid's Berlin address. 34 

Notes added in proof 1. Equation (8.20) and similar sub­
sequent equations are stated incorrectly. It is the annihilat­
ing part of A + that kills the physical state IIJI). 

2. The ideas of this paper have been applied to de Sitter 
QED (to appear in Annals of Physics) and to linear confor­
mal quantum gravity [Phys. Rev. D 27,2249 (1983)]. 
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APPENDIX A: INDECOMPOSABLE MODULES 

Let us first recall some basic facts concerning minimal 
weight representations of semisimple groups. Our interest in 
minimal weight representations stems from the physical re­
quirement of a lower bound on the energy spectrum (without 
which a vacuum state cannot be defined). We shall consider 
here only minimal weight representations which are K-fin­
ite, that is: 

Dejinition: A representation with minimal weight A is 
said to be K-jinite if in its associated weight diagram the 
multiplicity of each weight is finite and if only finite-dimen­

I 

sional irreducible representations of the maximal compact 
subgroup occur. We shall also say that a weight A is K-finite 
if it is the minimal weight of a K-finite representation. 

N ow if g is a semisimple Lie algebra of rank I, then there 
exist I independent Casimir operators in the enveloping alge­
bra of g. If D is a finite-dimensional representation of g, then 
the values of these Casimirs on D can be used to uniquely 
characterize the representation. However, if D is a minimal 
weight representation (i.e., bounded only from below), then 
it is possible for other (inequivalent) minimal weight repre­
sentations of g to have the same values for the Casimir opera­
tors. If this is the case, then the minimal weights of these 
representations must be related by Weyl reflection. More 
precisely, two inequivalent irreducible representations D), 
and D'l with minimal weights A and fl, respectively, possess 
the same values for the Casimir operators if and only if 

A - p = w( fl - p) , (AI) 

where w is an element of the Weyl group ofgandp is one-half 
the sum of the negative roots of g. In such a case, both the 
minimal weights and the irreducible representations them­
selves are said to be Weyl-equivalent. 

Finally, we point out that a precondition for the occur­
rence of a nondecomposable representation 

D" ---+D'l 

is the equality of the values of the Casimir operators on D" 
and D'l . For if a Casimir operator C had different values in 
D;, and in D,I , then the operator C in D" -D'I could be 
diagonalized and the representation then decomposed via 
Schur's lemma. ~4 

The Cartan-Weyl decomposition ofso(4,2) by the Car­
tan subalgebra spanned by (3.3) yields 12 nonzero roots 

( ± 1, ± ~, ± ~), (0, ± 1,0), (0,0, ± 1) . (A2) 

Using the ordering described in Sec. III, we computep to be 

p = (2, - ~, - ~) , 

The 12 roots generate six independent Weyl reflections 
through planes through the point p in weight space 

(A3) 

w(l, -~, - ~HEJ,J2) = U] + i2 + 3,~(E + i] - i2 - 2) - ~,~(E - i] + i2 - 2) -~), 

w(l, - ~,!HE,i],i2) = U] - i2 + 2,!(E + i] + i2 - 1) - H(E - i1 - i2 - 3) -!), 

wI!,!, - !HE,i],i2) = U2 - i1 + 2,!(E - i] - i2 - 3) - !,!(E + i] + i2 - I) -!), 

w(I,MHE,i] J2) = (1 - i] - i2,~(E - i, + i2 - 2) - !,!(E + i] - i2 - 2) -!), 

w(0,I,OHE,i]J2) = (E, - 1 - i1 J2)' 

w(0,0,IHE,i"i2) = (E,i1' - I - i2)' 

When compounded, these six reflections produce a lattice 
which may contain as many as 24 different weights. 

Yet only a few of these Weyl equivalent weights are K­
finite. For a minimal weight representationD (EO,J1J2) is not 
K-fintte unless both 2 J 1 and 2 j2 are nonnegative integers. 
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(A4) 

The symmetry of the lattice generated by the six reflections 
allows one to infer that if a weight (a + 2,b - ~,c - !) occurs, 
then so do all those weights obtained from 
(a + 2,b - ~,c - ~) when one replaces a by - a, b by - b, 
and/or c by - c.-We can thus draw out of the six simple 
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reflections the following transformations: 

wo(E,i"i2) = (E,i"i2) , (AS) 

w,(E,i"i2) = U, + i2 + 3,!IE + i, - i2 - 21 -!, 
!IE - i, + i2 - 2H) , (A6) 

w2(E,i"i2) = U, - i2 + 2,!IE + i, + i2 - 11 +!, 
!IE-i,-i2-31+!), (A7) 

w3(E,i"i2) = U2 - i, + 2,!IE - i, - i2 - 31 -!, 
!IE + i, + i2 - 11 -!), (AS) 

w4(E,i"i2) = (1 - i, - i2,!IE - i, + i2 - 21 -!, 
!IE + i, - i2 - 21 -!), (A9) 

w5(E,i"i2) = (4 - E,i,J2)' (AlO) 

These new weights will be K-finite so long as the expressions 
within the absolute value signs are integral and non-vanish­
ing. In fact, these weights account for all the Weyl equiv­
alents of (E,i"i2) that are K-finite. 

Let R (Eo,i"i2) be any indecomposable or irreducible 
K-finite representation of so(4,2) with minimal multiplicity­
free weight (Eo,i"i2) (EoER; 2i, and 2i2 nonnegative inte­
gers). From Eqs. (AS)-(AlO) we see that if 

(All) 

then there is noK-finite Weyl equivalent of(E,i"i2) that lies 
within the weight diagram of R (Eo,i"i2)' But this implies 
that there can be no indecomposable structure within 
R (Eo,i" )2) and so it must be irreducible. This condition is 
also sufficient for unitarity, as will now be demonstrated. 

Consider a continuous family /U"i2) of in de compos­
able or irreducible representations 

/U"i2) = !R (Eo,i"i2);EoER J . 

LetL be any element of the complex extension ofso(4,2) with 
the property that 

[L05 ,L] = L . 

Then there are complex numbers ak , k = 1,2,3,4, such that 
L = ~ ak (Lk 5 - iLk 0)' If the ak are real, then in a unitary 
representation L + = ~ ak (Lk 5 + iLkO )' The operator L, 
acting on an eigenvector of L 05 ' increases the eigenvalue by 
one andL + decreases it by 1. If the operator L + L is positive 
definite for one set of (real) ak , then it is positive definite for 
all such sets [because the co-adjoint action of so(4) on a, , ... ,a4 

is irreducible]. Now R (Eo,i"i2) is unitary if Eo is large 
enough, and L + L is positive definite. As the parameter Eo is 
decreased, there comes a critical point at which L + L be­
comes singular. For that value of Eo, R (Eo,i"i2) must be 
indecomposable; as the singularity of L + L implies that there 
exists a state above (Eo,i"i2) which cannot be returned to 
(Eo,i"i2)' Thus two subrepresentations result, characterized 
by unequal but Weyl equivalent minimal weights 
a = (Eo,i"i2) and a' with a' > a. But this cannot happen if 
(A 11) holds; therefore, (A 11) is a sufficient condition for uni­
tary. In fact, it is also necessary ifi,i2 =1=-0. 32

,2' In the special 
case whereeitheri, ori2 is zero, then the condition (All) may 
be extended to 

(AI2) 

since the relevant transformation (A 16) will not produce a K-
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finite weight above a = (Eo,i"i2) until Eo = i, + i2 + 1 (see 
Fig. 1). 

Now what happens to R (Eo'/ ,i2) if we allow Eo to fall 
below the limit of (All) [or (AI2)]? From the above argu­
ment we infer that L + L will become indefinite and thus the 
subrepresentation D (Eo, i, )2) will be non unitary . It is appar­
ent from (A6) that a Weyl equivalent weight will continue to 
reside above (Eo,i"i2); however, this weight will not be K­
finite unless Eo is integral. But when 

(Eo,i"i2) = U, + i2 + 3 - n,i,J2)' n = 1,2, ... , 

the transformation (A6) yields 

U, + i2 + 3,i, - n12;i2 - n12) , 

which is K-finite so long as 2i, and 2i2 are greater than or 
equal to n. Thus indecomposable representations of the form 

D U, + i2 + 3 - n,i"i2)+±D U, + i2 + 3,i, - n12,i2 - n12) 

are possible. Indeed, wheni, = iz = s12, such repesentations 
may be connected with "current type gauge fields of order n" 
(see Fig. 1). 

From (A7) and (AS) we see that another Weyl-equiva­
lent weight will appear above (Eo,i"i2) when Eo reaches 

Eo= li,-ill + 1, (A13) 

namely, 

U, - i2 + 2,i, - !,il - !) , 
where we have assumed without loss of generality that 
i, > i2' Ifi, = i2 = sl2 > 0, then the three transformations 
(A 7), (AS), and (A 1 0) all come into play when Eo reaches the 
value (A13). These transformations together with (A6) put a 
total of four K-finite Weyl equivalent weights 

(s + 3,0,0), 

(3,sI2,sI2) , 

(2, (sI2) + (112), (sI2) - (112)) , 

(2, (sI2) - (112), (sI2) + (112)) 

above (l,s/2,s/2). Among the many possibilities for inde­
composable representations with these minimal weights is 

[D (2,(sI2) + !,(s!2) - !) Ell D (2,(sI2) - !,(sI2 + m 
_D(I,sI2,sI2) , 

which describes "first-order gradient type gauge fields." 
Ifi, = iz = 0, then the transformations (A 7) and (AS) do 

not produce K-finite equivalent weights above (Eo,i"i2) un­
til Eo reaches the value 0. But here (A9) also comes into play 
and so one obtains the following complete set of K-finite 
Weyl equivalent representations: 

D(4,0,0), 

D(3,!,!) , 

D(2,1,0), D(2,0,1) 

D(q,!), 

D(O,O,O) . 

This particular case is important since it exposes the maxi­
mal structure of an indecomposable representation involv­
ing the physical photon D (2, 1,0) EIlD (2,0,1) (see Fig. 2). 
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(4,0,0) 

.... ~ (3,1/2,1/2) 
:: 

1) (2,0,1) 
(2,1,0); , 

.. ~ (1, 1/2, 1/2) 

FIG. 2. K-finite weights Weyl 
equivalent to (2,1,0). In confor­
mal QED, (0,0,0) is the zero ener­
gy ghost, ( 1,112,112) is the 
ground state of the longitudinal 
and scalar photons, (2,1,0) and 
(2,0,1) are the ground states of 
the transverse photons, and (3,11 
2,112) and (4,0,0) do not appear. 

(0,0,0)""-" -------

APPENDIX B: PROPAGATORS 

The constraint Tr K = 0, when applied to (5.1), reads 

[y·Jz + (1 - d - 2s)y·Jz] K = 0, (Bl) 

and gives the constraint 
[(3 - d)/2 + b - S]-ICab + (s - a - b )-ICa,b+ I 

+ a-ICa_I,b+ I = O. (B2) 

This fixed Cab in terms of Cob' the latter remaining arbitrary. 
The constraint Div K = 0 gives the recursion relation 

Aab Cab + (N + 1 - a - b )(s + 1 - a - b ) 

X[Ca•b _ 1 - Ca - l •b ] 

+ (a + 1 fCa + I.b _ I 

- (a + 1)2Ca + l.b = 0, (B3) 

Aab (b - a)(N + s - 2a - 2b) + b (b + 2a + d + 1) - s. 

(B4) 

This is consistent with (B2) and determines Cab in terms of 
Coo = 1. For s = lone obtains the coefficients shown in (5.5). 

APPENDIX C: MODAL DECOMPOSITION 

To find the decomposition of a propagator such as (5.5) 
one expands each inner product in a Fourier series, as in 

2y.z' = y+z'_ - 2 yoz' + y_z'+ . 
The notation was explained in (4.18) and (5.3). The first term 
has the lowest energy: - 1. In the case of non integral pow­
ers ofy·y', the expansion (5.2) has to be used. In (5.5), the first 
factor has lowest energy 1 - N. The first two terms in the 
bracket have lowest energy - 2, but there is a cancellation 
so that the combination has lowest energy - 1. The third 
term has energy 0; hence K has a Fourier expansion in pow­
ers of exp( - it) with exponents - N, - N + 1, .... The first 
term is (up to a numerical factor) 

(Cl) 

with 1J = y + z - Z+ Y and 1J' = y'_ z' - z'_ y'. Under the 
transformations of the compact subgroup SOld + 1), the 
d + 1 functionsY: + 11] transform like the vector representa­
tion; D (1) for d = 2, D (~,!) for d = 3. 

Consider (5.9) next. The interpretation of terms appear­
ing in the expansion is simplified by choosing variables as 
follows. First express all inner products in terms of y +' Y _, Y 
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and Z+,Z_,Z. Next eliminate z_ in favor ofy.z and z in favor 
of 1] = y + z - z + y. Then all dependence on z + cancels; this 
is because y·Jz K q+ = O. One finds in this way that 

K 0+ = 2d ( Mpp + M,g y' ·z' + y.zMgs + y·z Mgg y' .z') , 
(C2) 

where Mpp, Msg, Mgs are polynomials in (y + y'_ ) -I with 
coefficients that are polynomials iny_,y'+ ,y, y',1],1]'. The 
terms of lowest energy are given by (if q = 0) 

Mpp = _(y:;:d-I1])o(y'+-d-I1]')*+"" (C3) 

Msg y' ·z' = (y:;: d - 2Y01])( y'+- d - I y' .z')* + ... , (C4) 

where one recognizes the functions (6.5) and (6.6). The term 
Mpp contains the ground state, with energy Eo = d. If d = 3, 
then the minimal weight is (3,!,!). The only weight that is 
equivalent to this one, and inside the weight lattice of K 0' ,is 
(4,0,0). The lower equivalent weights (2,1,0), (2,0,1), (q,!), 
and (0,0,0) do not appear. This is related to the fact that K, 
and thus all the fields, satisfy one of the subsidiary condi­
tions: Tr t/; = y·Jz t/; = O. When d = 2, then the minimal 
weight is (2,1) and the only other relevant weight is (3,0). 
Therefore, in both cases, one needs to investigate the levels 
Eo = d and Eo = d + 1 only. The raising operators (for ener­
gy = Los) are 

L i+ = (y_Ji + 2YiJ+) + (z_Ji + 2ziJ+). (C5) 

Application of L / to the physical ground statesy:;:d- l1Ji 
= POi yield (d + W states t/;ij' Under the action of the com­

pact subalgebra sold + 1), they break up into three irreduci­
ble representations spanned by the traceless part of t/;ij + t/;ji' 
t/; ij - t/;ji, and ~ t/;ii' The first two leak back to the ground 
state under the action of the lowering operators 

L i- = (y+Ji +2YiJ_) + (z+Ji +2ziJ_), (C6) 

but the third is a minimal weight vector: L i- ~ t/;jj = O. In 
fact, this function is the gauge fieldy:;: d - ly .Z = go' The 
ground state So = Y + d - 2Y°1] of the scalar field appears as the 
coefficients of gil' in M'I! y' .z', Eq. (C4). It leaks to the abso­
lute ground state and is a minimal weight vector in the quo­
tient. 

The propagator (5.13) may be analyzed in the same way. 
When d = 3, the simplest choice of q is q = 1, which leads to 
(5.14). Taking q = 0, one finds an expansion like (C2), 

K 0- = Npp + Nsg + Ngs + Ngg , (C7) 

whereNsg is a sum of terms of the form t/;( y,z) z'.Jy ' t/;'( y',z'), 
Ngs is a sum of terms like t/;'( y' 02') z·Jy t/;( y,z), and N gg can be 
expressed as z.Jy z'.Jy.A (y,z,y' 02'). The lowest energies are 
given by 

Npp = - [y:;:2(ZiYJ -ZiYi)] 

X [ y'+- 2 ( z; y; - z;y;) ] * + ... , (C8) 

Nsg = - 2[ y:;:2 Yi Z+ ] [y,+-21J;]* + ... , (C9) 

Ngg = [y:;: IZ +] [y:;: IZ '_ ]* +.... (ClO) 

When d = 3, the equivalent weights are (0,0,0), (q,!), 
[2,1,0], (2,0,1), (3,!,!), and (4,0,0). The last two do not gener­
ate invariant subspaces or subquotients, as is easily seen in 
the gauge (5.14). As was pointed out in Sec. VI, after (6.17), 
the total representation is equivalent to D6 ® D (1,0,0), and 
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this product does not contain D (3,M) or D (4,0,0). When 
d = 2, the equivalent weights are (0,0), (1,1), (2,1), and (3,0). 
The direct product D6 ® D (1,0) does not contain D (3,0), so 
that the weight space (3,0) need not be examined. Thus, in 
either case, one must investigate the energies 0, 1, and 2. 
Only Ngg has E = 0 terms. In Nsg the lowest energy is 1. The 
E = 2 space is very complicated, with contributions from 
N sg , Ngs , and Ngg , and the remainder shown by (CS). The 
detailed calculation will be omitted. 

APPENDIX D: INTEGRALS 

In Rd t- 3 introduce coordinates (Ya ), 
a = O,I, ... ,d + 1,5, and the pseudo-Euclidean metric {j de­
fined by {j( y) = y2 = y~ + y~ - yi - ... - y~ + I , as in Sec. 
IV. On the coney2 = 0 identify any pair y,y' of points if there 
is a positive c such that Ya = cy~, a = 0, ... ,5. The resulting 
projective space is SI XSd. Coordinates t for SJ andy for Sd 
were introduced in (5.3). By an integral over the (projective) 
cone one means an integral over SI XSd , with the standard 
volume element dt dy that is invariant under the induced 
action of the compact subgroup SO(2) ® SO(4). Let L denote 
a scalar field on the cone, homogeneous of degree N, and let a 
(generally multivalued) function L on SI ® Sd be defined by 
L (y) = yN L (t,y), in the notation ofEq. (5.3). Then the fol­
lowing is elementary and well known: 

Proposition: The integral 

J dy L (y) 1, xs" dt dy L (t,y) (01) 

is invariant under the transformations ofSO(d + 1,2) if and 
only if L = yN L is a scalar field and N = - d - 1. 

Proof Let (L"), with 0' real, be a family of homogeneous 
scalar fields on Rd + 3 , with 

N L'7 = (ia - d - 1 )L, N = y·ay 

and define 

F(y) = 1 dO' L"(y). 

Now consider the invariant integral 

(02) 

(03) 

ld+3[dY ] {j(y2)F(y)ex:1
xs

d dtdy [Y'" dY L dO'LC7(y), 

where [dy] is the Lebesque measure. Set 
L a

( y) = y70 - d - J L"(t,y) and Y = eX; then it becomes 

( dtdy( dxdO'eiaX LC7(t,y) 
Js,xs, JR, 

ex: 1, xs" dt dy L O(t,y) . 

Hence (03) depends on L ° only, and agrees (up to a numeri­
cal factor) with (01), which confirms that the latter integral 
is invariant. 

The integrand in (6.1S) is 

}a [Ya J2 - 2(y.J + d + l)Ja]A 

= Jf3Qf3 + A [ J2y -j_ 2(N + 3)J-j] 

with 
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Qf3 =Ya(Jaaf3 -}f3aa)A 

+ [2/(d+ l)]Ya(Yf3Ja -YaUJA 

- Ya (AarJa - Aaa }(3) + (N + 3)A}f3 . 

Since the last term is zero when d = 3, one has in that case 

JpQp = 

(JpYa - aaYf3 [}aJpA - Jpla Jp }.JA + Aaa}p ] 

= - iMaf3 [}f3+-+<1pA + liMap j-JA ] , 

which reveals that S dy a·Q = 0, and (7.8) follows. 
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The derivation of cross sections for collisions with polarized particles of spin ~ can be simplified 
considerably if the scattering amplitude is calculated explicitly before the transition probability is 
obtained by a simple squaring. The states of the polarized particles are represented as 
superpositions of states with definite helicity. The coefficients of the superposition relate directly 
to the strength of the transversal and longitudinal polarization. The helicity amplitudes are 
products ofhelicity currents for which detailed formulas have been elaborated. Two-component 
spinors have been used. All the contractions of vector indices are done with a new set of general 
formulas. The resulting cross sections show terms with separate factors due to the polarization, 
the energy, and the directions of the particles. Therefore, the high energy approximation can be 
achieved very conveniently. Applications of the described method have been performed to the 
scattering of electrons by electrons or positrons including the exchange of Zo and Higgs particles. 

PACS numbers: 13.85.Lg, 11.80. - m, 12.20. - m 

1. THE USUAL METHOD OF CALCULATING CROSS 
SECTIONS 

The usual method 1 of deriving cross sections of QED 
reactions avoids calculating explicitly the scattering ampli­
tude 

(1.1) 

between the states uQ (p, s) of polarized spino! particles. In­
stead of this the transition probability 

IMfi 12 = [uQ(p,s)yJtYouQ'(p',s')] [uQ'(p',s')ruQ(p,s)] 
(1.2) 

is considered and expressed as a trace of Dirac matrices. 
Thereby the projection operators for normalized spin states2 

are used 

A Q(p,s) uQ(p,s)uQ(p,s) = E. ~~m . + (l + ys~), 
(1.3) 

The quantity Q characterizes the fermions (Q = + 1) and 
antifermions (Q = - 1). The vector ?I' represents the mov­
ing spin vector, which is gained from the spin vector t" in the 
rest frame of the particle 

t" = (0, Sj, I:W = 1 (1.4) 

through a Lorentz transformation. A separation of the rest 
spin vector in the components parallel and transversal to the 
direction of the momentump = fillPl, 

allows a simple presentation of the moving spin vector 

sl'=~ + Sf, 
where 

~ = sll (~ , ! p). Sf = (0,51 ), 

(1.5) 

(1.6) 

(1.7) 

The transition probability now becomes a trace of Dirac ma­
trices (more generally a product of such traces) 

IMfi 12 = tr[yJ +yoA Q'(p',s')FA Q(p,s)]. (1.8) 

Such traces can be evaluated analytically by means of special 
computer systems, Let F = Fn describe the kernel of a fer­
mion current with n vertices. In this case at least (4n + I)!! 
terms arise by the evaluation of the trace, if the fermions are 
polarized, but (4n - I)!! terms with unpolarized particles. 

Each polarization vector (1.7) enlarges the magnitude 
of the resulting terms by a factor of the order Elm. At high 
energy conditions, however, all these big magnitude terms 
cancel out. The cancelation can be avoided if the high energy 
approximation of the spin projection operator (1.3) is used3 

A Q(p,s) = (Q 14m).e.(1 + QSII Ys + YS~l) + 0(1). (1.9) 

Anyway, the formulas of the cross sections which are de­
rived with the conventional method, presents a lot of terms 
in a completely unarticulated form, which allows no analytic 
insight into the actions of the various polarization states. 

2. ALTERNATIVE WAYS TO EVALUATE SCATTERING 
AMPLITUDES WITH POLARIZED FERMIONS 

For many cases it is very convenient first to evaluate a 
matrix element explicitly and thereafter to gain the transi­
tion probability by squaring it. This proceeding has been 
proposed by several authors.4

-
1O 

A further facilitation of the calculations is obtained if 
the amplitude is expanded with helicity states.4

-
8 We will 

observe that the coefficients of this expansion are in a direct 
relation to the degrees of the longitudinal and transversal 
polarizations of the particles. Moreover, in this way the de­
pendence on the spins and on the dynamical factors is sepa­
rated, because the influence of the polarization is exclusively 
described by the expansion coefficients. 

The explicit calculation of the amplitude can be done in 
different ways. Many authors use four-component spinors 
and the y matrices in the original form of Dirac. 9.10 The 
transition to the two-component spinors of van der Waerden 
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and to Pauli matrices causes essential simplifications.7 The 
present paper uses the two-component spinors which de­
scribe the spin directions in the rest frames of the particles. 
The restriction to a spin description in the rest frame allows 
to use only one type of van der Waerden spinors representing 
the rotation group. Spinors for moving particles are obtained 

by the application of boosts ~pa/m and rotations u. 7
,8 We 

show that it is convenient to use only boosts in a suitably 
defined z direction, With this restriction we can separate the 
dependence of the amplitude on the energies and on the di­
rections of the moving particles because in the z direction the 
boosts are diagonaL With boosts in arbitrary directions no 
such separation can be obtained, 

The separated energy factors allow a transparent appli­
cation of high energy approximations just in this early state 
of the calculation, The high energy approximation causes a 
considerable simplification of the results because only few 
helicity amplitudes survive, 

The scattering amplitudes consist of products of cur­
rents in such a way that all the vector indices are contracted, 
Several authors use an expansion of the currents into 16 basis 
currents according to the fact that the Dirac algebra shows 
16 basis elements r i 

16 

r= I Air" Ai =!tr[rr i), (2.1) 
i= 1 

The 16 basis currents are evaluated easily by different meth­
OdS,7-1O The coefficients of these expansions are traces con­
taining vector indices. All these indices have to be contracted 
now according to the usual methods-Chisholm's formu­
las, II Kahane's algorithm, 12 etc. In this way the advantages 
as well as all disadvantages of the conventional trace meth­
ods return to the calculation, The expansion into the 16 basis 
currents can be avoided completely and replaced by a treat­
ment solving the problem more directly. 

The Feynman diagrams present the kernels of the cur­
rents as sums of products of r matrices. The transition to 
two-component van der Waerden spinors yields terms con­
taining a separate energy factor and a Pauli current includ­
ing products of Pauli matrices with vector indices alternat­
ing their covariant or contravariant positions. 

The vector indices of the Pauli currents now have to be 
contracted either with the indices of other Pauli currents of 
the reaction or with other external vectors, i.e" describing 
the polarization of the photons, etc. We give powerful for­
mulas (3,8), (3,10), and (3,11) which make the taskofcontrac­
tion solvable in complete generality, 

Finally the amplitudes are represented by a sum of 
terms, each of which shows an energy factor and several 
special spinor scalars formed by two van der Waerden spin­
ors, The scalars describe the dependence on the directions of 
the momenta and spins, 

We notice that quite general symmetries connect the 
helicity currents and amplitUdes with the ones of reversed 
helicity indices (Sec. 4). These symmetry relations have been 
derived independently of the discrete Lorentz transforma­
tions, They reduce the number of the independent dynami­
cal functions of the cross sections by a factor of 2. 

2848 J. Math. Phys., Vol. 24, No. 12, December 1983 

3. THE DETAILS OF EVALUATING THE AMPLITUDES 

Each scattering amplitUde with spin-! particles is com­
posed by Dirac currents uQ' (p', s')FuQ (p, s). Here the kernel 
r is a special 4 X 4 matrix representing the happenings of a 
particle passing the reaction. Generally it shows several vec­
tor indices which are contracted with the indices of mo­
menta or polarization vectors of photons or other spin-l par­
ticles, or with the vector indices of further Dirac currents of 
the reaction, The kernel can be involved in momentum loop 
integrals. It is given by a sum of products of r matrixes. 

The spinors uQ (p, s) are conveniently expanded by two 
helicity spinors (Appendix A) 

uQ(p, s) = a': (ft, s)u': (p) + a~ (ft, s)u~ (p), (3,1) 

The coefficients do not depend on the energy ofthe particle, 
In this way each Dirac current is expanded by four helicity 
currents 

uQ'(p', s')FuQ(p, s) 

= a':' a': (u'r ru': ) + a':' a~ (u':' ru~ ) 
+ a~' a': (u~' ru': ) + a~ a~ (u~ ru~ ), (3,2) 

The four-component helicity spinors can be separated 
in a two-component spin or IN, jJ) and energy factors 1] ± 

(Appendix A) 

Q( ) _ 1 ( 1]QN'IQN,ft) ) 1]N = (E: NP)1I2.(3.3) 
UN p - vL Q1] _ QN·I QN, jJ) , 

Accordingly, the r matrices 

(3.4) 

and their products can be split into four Pauli matrices. We 
define the product 

(3.5) 

which results in a special Hermitian Pauli matrix. The use of 
this splitting brings the helicity currents of pure products of 
r matrices into the following forms (here is a = 1,0): 

2n 
-Q' ( ') II Vi( )a Q ( ) UQ'N' P r rs uQN P 

i= 1 

- ~, (N' ~'I V""V2nlN~) - 2 1] -N'1]N ,p av,... ,p 

( l)a Q, (N' ~'I v, .. · IN~) + - 21]N'1]-N ,p a v,"'V2n ,p, (3.6a) 

2n + I 
-Q' ( ') II Vi( )a Q ( ) UQ'N' P r rs uQN P 

i~ I 

= 11]' ,1] (N' p~'laV''''V2n+'IN p~) 2 N N , V 2'" , 

( l)aIQQ" (N' ~'I v, .. · IN~) + -:1 1]-N'1]-N ,p aV''''V2nt-1 ,p. 
(3.6b) 

The helicity currents of r products are separated into energy 
factors and Pauli currents of the form 

(N' p~'lav, V,'" IN p~). 
, l'2 ••• , 

(3,7) 

The forms (3,6) help to derive general symmetry relations for 
the helicity currents and amplitudes (Sec. 4). They also give a 
basis for the applications of a high energy approximation 
which make only a few helicity amplitUdes survive (Sec. 5), 
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The evaluation of the scattering amplitudes requires 
that all vector indices of the helicity currents have to be con­
tracted. The contraction of the vector indices of the Pauli 
currents (3.7) with other external momenta can be treated 
with the formulas (Appendix A) 

Pfld" = mL:IN,jJ)r/_N(N,pl, 
N 

(3.8) 

Pflafl = mL: IN,jJ)TJ;'(N,pl· 
N 

Some cases require a contraction of Pauli currents with nor­
malized polarization vectors of spin 1 particles c"± (p) per­
pendicular to the momentumpl'. We use the complex vector 
g given by (A27) in the helicity frame (Appendix A) and de­
fine in agreement with the literature6,13,14 

c"->- (p) = (lIv'L)(O, - g), c"_ (p) = (lIv'L)(O, g*). (3.9) 

The contraction of Pauli currents with these polarization 
vectors is treated with the formula (A28) or 

ej,(p)afl = - ej,(p)d" = Nv'LIN,jJ) ( - N,pl. (3.10) 

The vector contraction of two Pauli currents can be treated 
with the formulas (Appendix A)15 

(Nllaaflb INz) (N3lcafld IN4 ) = 2(Nl lad IN4 ) (N3 lcb INz), 

(Nllaaflb INz) (N3Icd"d IN4 ) = 2(Nl lab INz) (N3 lcd IN4 ) 

- 2(Nl lad IN4 ) (N3 lcb INz). (3.11) 

Here a, b, c, and d mean any arbitrary 2 X 2 matrix, Some 
specializations of these formulas are found in Appendix A. 
In many cases we are interested in contracted products of 
two helicity currents. Appendix B shows explicitly how to 
treat this case. 

The complete contraction of all vector indices makes all 
the Pauli currents (3.7) disappear. Instead of them we obtain 
products of scalars of two two-component spinors 
(NI , PIIN2 , pz) which each can be expressed by the direc­
tions (JirPi of the vectors Pi 

( AI A ) (J I (J2 +,PI +,P2 =cos-cos-
2 2 

. (JI '.1.. (J2 '.1. + Sin - e - 1"'Sln - el
", 

2 2' 

(JI . (J2 ... - cos - Sin - e - I"" 
2 2 

. (JI '.1. (Jz + sm - e - I", cos -
2 2 ' 

(3.12) 

(- ,PII + ,pz) = - (+ ,Pll- ,Pz)*, 

(- ,PII- ,pz) = (+ ,PII + ,pz)*· 

We show in Appendix A that the coefficients used in the 
expansion (3.1) of general spinors by the helicity spinors can 
also be represented by these spinor scalars 

a~(p,s)= (QN,pIQ,s) =N[aNQ(p,s)]*. (3.13) 

The expansion coefficients have a direct relation to the po-
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larization vectors of the incoming and outgoing spin-! parti­
cles5.16 (Appendix A) 

a~(a~)* = ~(1 + Ns lI ), a~(a~ N)* = !QSl e - iQN"'. 
(3.14) 

These formulas (3.14) will directly apply when the cross sec­
tion is obtained by the squaring of the scattering amplitude. 
The simple and transparent form of the cross section is 
shown in Sec. 6. 

4. SYMMETRIES OF THE HELICITY AMPLITUDES 

The Pauli currents obey simple symmetry relations 
which generalize the relations (A34) and (A35) 

(NI'Pllav~;: .. IN2'PZ)* = (N2,p2Ia::v~'INI'PI)' (4.1) 

(NI'Pllav~;: .. INz,pz) = NINz( - NZ,p2Ia:::v~'1 - N1,pz), 
(4.2) 

These relations and the forms (3.6) help to derive quite gen­
eral symmetry relations for the helicity currents: 

[u~:(p')ru~(p)]* =NN'u~'N'(P')rI*)U~N(P). (4.3) 

Here we suppose that the kernel r is given as a sum of pro­
ducts of y matrices with arbitrary coefficients. The kernel 
r l*) arises from the original expression by an operation (*) 
which keeps all the factors r" on its place and unchanged but 
takes the conjugate complex value of all the coefficients, 
Especially, the matrix Y5 = irPylrr changes its sign. 

The scattering amplitudes as described by a Feynman 
diagram is a product of several (say n) Dirac currents. Let F 
fermions be of equal type. In this case the general amplitude 
consists of a sum of 4n different helicity amplitudes, each of 
which belongs to F! different diagrams. The pairs of terms 
which show reversed helicity indices Ni are connected by a 
symmetry relation of the type (4.3), namely 

(4.4) 

As a consequence of the operation (*) all the pseudovector or 
pseudo scalar couplings change their sign. Also the helicity 
indices of the emitted and absorbed photons are reversed, 
and a factor - 1 is multiplied for each photon, 

5. THE HIGH ENERGY APPROXIMATION 

For high energies the ratio TJ _ITJ + is small and approxi­
mately m12E. Only two of the four helicity currents of the 
type (3.6a) or (3.6b) survive. For the currents including even 
products of r" (type r = 0) the surviving currents are 

2n 

ug: (pIl II yV'(Y5tU~ Q, (pz) 
i= 1 

_ ( l)U Qz (I) (2) (+ A I v,'" I A ) - - "2 TJ + TJ + ,PI a ","'V2" -, pz , 

2n 
(5.1) 

u~ Q, (pIl II yV;(Ystug~ (pz) 
i= 1 

T. B. Anders and W. Jachmann 2849 



                                                                                                                                    

For the currents including odd products of Y' (type 7 = + 1) 
the surviving currents are 

2n + I 

u8:(PI) II Y
V

'(YstU8:(P2) 
i=l 

= lTjII) Tj(2) (+ pA juV, ... V 2n + 1 1 + pA ) 
2 + + '1 V 2 '" , 2 , 

(5.2) 
2n + I 

U(?, Q, (ptl II YV'(Ystu~'Q,(P2) 
i= 1 

= ( _ l)Q QIQ2 Tjll) Tj(2) (_ p" lu v,··· 1 _ p" ). 
2 + + 'I 1.' 1"'V2n + 1 '2 

In agreement with the symmetry (4.3) one of the surviv­
ing currents is the conjugate complex of the other-except 
eventually a sign. 

A general Dirac kernel r of a current has either even 
(7 = 0) or odd (7 = + 1) factors Y' in the high energy limit. 
We remember that the fermion propagators produce factors 
p + m, which reduce simply to p in the high energy limit. We 
conclude that only two of four helicity currents survive in 
the high energy limit. 

We suppose that this statement is correct also when the 
currents are involved in any momentum loop integrals 
(Feynman integrals). For instance, the explicit QED formu­
las for the radiative corrections of the e-e scattering in the 
lowest order17

•
18 show products of two helicity currents only 

of the type 7 = + 1. 
We have seen that the scattering amplitude is a special 

product of n Dirac currents, leading to 4n different helicity 
amplitUdes. The high energy approximation reduces this 
number drastically to 2n many surviving helicity amplitUdes. 

The previous statements shall be exemplified. We con­
sider the creation of a pair of muons (particle 3 = /1- , parti­
cle 4 = /1 +) by the collision of an electron (particle 1 = e -) 
and a positron (particle 2 = e+). We suppose this reaction as 
running through the production of one or more photons and 
Zo, i.e., intermediate spin-1 particles. In this case the ampli­
tude has the following form 

me· e+-(I)-I"-I" + 

= - a l 132 13 !atA 1+ a l 13za! 13tA II 
+ 13la2 13 !atA I11-13laza! 13tA IV. (5.3) 

Here we used a simplified notation for the superposition co­
efficients (3.1) or (3.13) 

aj = (+ ,pjl +, U, 13i = (- ,Pil +, Si), 
-13r=(+,pil-,Si)' ar=(-,Pil-,s). 

(5.4) 

The dynamic functions A i are the helicity amplitudes 19 sur­
viving in the REA 

AI=((~ ~lmlI !)), AII=((~ ~lmlI ~)), 
A III = ( (~ ~ I m I I !)), A IV = (0 ~ I m I I ~)). 

(5.5) 

The kernels of the constituting currents have odd factors Y' 
in the REA. They are of the type (5.2) with 7 = 1. 
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If the creation of /1-/1 + by e-e+ runs through odd ad­
ditional scalar Riggs particles,20 a further amplitUde has to 
be added, namely, 

9', e 'e -IOI·-11'!1 

= alazajatB 1_ a laz13j PtB II 
- 131 13zajatB III + 13113213 j 13 tB IV. (5.6) 

The dynamical functions B i are the helicity amplitudes sur­
viving in the REA 

BI=((~ ~19'CII !)), Bll=((~ ~19'C11 ~)), 
Bill = ( (~ ~ 19'C I I !)), B IV = ( (~ ~ 19'C 11 ~)). 

(5.7) 

The kernels of the currents constituting this channel of the 
reaction have even factors y' in the REA. They are of the 
type (5.1) with 7 = O. 

The scattering reaction e - e + ---+e - e + contains similar 
amplitudes as (5.3) and (5.6), with particle 3 = e- and parti­
cle 4 = e+. But we have to add (subtract) the amplitudes of 
the genuine scattering channel. The scattering channel of the 
type 7 = 1 (arbitrary many intermediate spin-l particles and 
even spin-O particles exchanged) yields the REA 

= - ala2a!atC I - al 13zaj 13tC II 

- 13la2 13 jatC III - 131 132 13 ! 13 tc IV. (5.8) 

where the dynamical functions C i are defined as 

CI=(O ~lm'II !)), CII=(O ~19J"II ~)). 
Clll =((3 :lm'll !)). CIV=((~ 2Im'II4)). 

(5.9) 

The scattering channel of type 7 = 0 (odd spin-O parti­
cles and arbitrary many intermediate spin-1 particles ex­
changed) yields the REA 

= -al13213!atDI-ala213j13tDll 
- 131 132ajatD III - 13la2a! 13 tD IV, 

where the dynamical functions D i are defined as 

(5.10) 

DI=((~ ~19'C'II !)), D
II =((3 ~19'C'II ~)), 

Dill = (0 ~ 19'(' I I !)), D IV = (0 ~ 19'C' I I ~)). 
(5.11 ) 

We notice the symmetries as consequences of the rela­
tion (4.4) 

(5.12) 

and the similar relations for the other amplitudes B, C and D. 
The helicity amplitudes for the Bhabba scattering and 

for the e-e- scattering with polarized fermions are easily 
calculated in the lowest order of the perturbation expansion, 
including Zo exchange. The results are found in a previous 
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paper.2I The explicit calculation confirms the symmetries 
(5.12). 

6. THE FORM OF THE CROSS SECTION 

The absolute square of the scattering amplitude yields 
an expression proportional to the cross section. This expres­
sion shows products of the superposition coefficients of 
which two at a time belong to the same fermion. These pro­
ducts of two coefficients belonging to the same particle have 
a simple physical meaning. They relate directly to the 
strength of the transversal and longitudinal polarization ac­
cording to the formulas (3.14). The cross section for the reac­
tion e - e + ---+( 1 )---+,u -,u + with polarized fermions, for in­
stance, has the following form in the HEA: 

dUe e' ~II)~I" -I" + 

ex: IA 112(1 +SIII)(I-s211)(I-s311)(1 +S411) 

+ IA IVI2(1 - SIII)(1 + S211)(1 + S311)(1 - S411) 

+ IA IIIZ(1 + SIII)(1 - s211)(1 + s311)(1 - S411) 

+ IA I11IZ(1 - sllI)(1 + s211)(1 - S311)(1 + S411) 

+ 2Re! - [A IA III'( I - S311 )( I + S411 ) 

+ AliA IV*(I + S311)(1 - S411) ]SU S21 eil¢, - ¢,) 

- [AIAII*(I +SIII)(I-szlI ) 

+A IlIA IV*(I_SIII)(1 +SZII)]S31 S41 eil¢,-¢,) 

+ AlA IV*SU SZ1 S31 S41 ei(¢, -.1>, - ¢, + ¢,) 

+ AliA 1lI*SUSZ1S31S41eil¢,- ¢, + ¢, - ¢')J. (6.1) 

We notice that several pairs of the dynamical factors A iA k * 

in this formula are identical except the terms which violates 
the parity and which differ by a sign. This is a consequence of 
the symmetry (5.12). 

The formula (6.1) is correct also for partly polarized 
particles. In this case the degree of polarization is described 
by the length of the spin vector, which is now smaller than 1. 
If the polarization of the final particles is not observed, we 
have to put the spin vector equal zero and to multiply the rest 
of the cross section by 2 for each final particle. 

The cross section of the e - e - scattering and of the 
Bhabba scattering has been calculated with this method and 
given elsewhere. 2 

I The contributions to the scattering of po­
larized electrons and positrons due to the Higgs particles are 
calculated in Ref. 20. 
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APPENDIX A: SPINORS 

The four-component spinors uQ(p, s) in Weyl's form22 

are composed by two associated two-component spinors (or 
van der Waerden spinors23) Uk and vk 
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Q A_I (UdP,QS)) 
U (p, s) - v'2 Qvk(p, Qs) , 

uQ(p, s) = _1_ (QVk(p, Qs), udp, Qs)). 
v'2 

The two-component spinors are normalized by 

(AI) 

-k I - k 1 (A2) V Uk = , UkV = . 

These normalization relations reduce the eight real param­
eters of Uk and vk to 6. Three of them are used to describe the 
momentum, two describe the spin direction, and one re­
mains for an arbitrary phase. 

The charge quantum number Q, the momentum pi" and 
the moving spin vector ?f' of a particle state are represented 
by 

Q = uQ(p, s)uQ(p, s), 

pi" = muQ(p, s)Y'uQ(p, s), 

?f' = - QuQ(p, S)Y5Y'UQ(P, s). 

The representation of the y matrices 

UI") (0 d"o ki), o = d"kl 

allow us to write 

(A3) 

(A4) 

(A5) 

(A6) 

pi" = !m [Ukd"k1u l + iid" kiVi], (A 7) 

?f' = W [Ukd"k1u l - ukd" kiVi]. (AS) 

We choose the direction ((J4> ) for the momentum, and W.p) for 
the spin vector in the rest frame of a particle 

jJ = (sin (J cos 4>, sin (J sin 4>, cos (J ), (A9) 

s = (sin {} cos.p, sin {} sin.p, cos {} ). (AlO) 

In the rest frame the two associated two-component spinors 
Uk and vk are identical 

(All) 

The rest frame spinor for electrons (Q = + 1) with spin par­
allel (N = + 1) or anti parallel (N = - I) to the unit vector s 
has the components 

I + ,s) = (:), I - , s) = ( - ;*). (AI2) 

where 

c = cosW 12), S = sinW 12)e i'P. (A13) 

The state with spin antiparallel to s and the state with spin 
parallel to - s are equal up to the phase factor - ei'P. 

The spinors for moving states are obtained by the appli­
cation of a boost B (p): 

udp, NS) = B (p)udO, NS) = B (p)IN, s), 
. . (AI4) 

vk(p, NS) = B -1.t(p)Vk(O, NS) = B -1.t(p)IN, s). 

The boost B (p) is composed of a unitary matrix 
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U(OifJ) = e ~ i(</>/2 ju'e ~ i(O 12 juyei(</> 12)u, = (~ -: *) 
(AIS) 

with 

C = cos(O 12), S = sin(O 12)ei</> (AI6) 

and a Hermitian (and diagonal) matrix 

B(p) = (~+ ° ) (AI7) 
YJ~ 

with 

p = (E, 0, O,p) (AIS) 

and 

YJ± = [(E± p)/m] 1/2. (AI9) 

The unitary matrix U tips the direction (OifJ ) of the momen­
tum into the z direction. 7

•
13 The Hermitian matrix B (p) 

moves the rest frame along the z axis. By evaluating the Her­
mitian matrix 

B(p)= U(OifJ)B(p)U~I(OifJ) 

we find 

B(p) = I IN,P>YJN(N,pl, 
N 

B ~ I.t(p) = I IN,P>YJ ~N(N,pl, 
N 

and 

(A20) 

(A2l) 

[B (p)f = ~ pi"if, [B ~ I.t( p)F = ~ pi"0'. (A22) 
m m ~ 

The comparison of (A22) and (A21) yields the relation (3.S). 
The four-component spinors for helicity states with s = N P 
are, according to (AI), (AI4), and (A21), 

Q _ I ( YJQNIQN,P») 
uN(p) - vL QYJ ~ QN IQN,p) , 

(A23) 

The general four-component spinors are superpositions of 
the two helicity spinors 

Q( ') " Q Q up,s = ~aNuN' (A24) 
N 

The coefficients of this expansion 

a~(p, s) = (QN,pIQ, s) (A2S) 

are independent on the energy. 
By tipping the primary coordinate system around the 

axis ez X p according to (AIS) and the literature7
•
13 arises a 

helicity frame with the basical vectors ex., ey " and ez ' = p. 
The spin vector (A 10) is given with regard to this helicity 
frame by 

(A26) 

The unit vectors perpendicular to the momentum p can be 
gathered by a complex vector 

g=ex ' +iey ' =(C 2_S 2,i(C 2 +S 2), -2CS).(A27) 
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The following relation can be verified with (AI2) and (A27): 

gu=21 +,p>( -,pl· (A2S) 

This relation and the high energy limit of (3.S) 

1+ Qpu= 2IQ,P>(Q,pl (A29) 

allow to derive now Eqs. (3.14). 
According to (AS) and (All) the spin vector in the rest 

frame is given by 

s = N (N, slulN, s). (A 30) 

We find with (A29) and (A2S) now 

1+ N ps = 2 (QN, sIQ,p)(Q,pIQN, s), 
(A31) 

Ngs = 2(N, sl + ,P>( - ,piN, s). 

These relations lead to (3.14) with the help of(A2S). The two­
component rest frame spinors INo ei)=IN) have interest­
ing features. We state the relation 

from which several equations can be derived, for instance, 
the following relation between the spinor scalars: 

(NiINk)(N/INm) = (N;INm)(NtINk) 

+NiNk(Ntl-N;)( -NkINm). (A33) 

We derive also the symmetry relations between Pauli cur­
rents 

(NilifINk )* = (NklifIN), (A34) 

(Ni 1000'INk) = NiNk ( - Nk Iu~ 1- N). (A3S) 

The last two equations are easily generalized to Eqs. (4.1) and 
(4.2). 

The Pauli matrices if can be expressed with the help of 
the two-component rest frame spinors for spin parallel or 
anti parallel to the z axis: 

I + 0) I + , ez ) = (~). I - 0) I - , eJ = (~). (A36) 

We find 

I if8ufl = 2 I MN INo) (Mo181 - No) ( - Mol, (A37) 
I' M.N 

I if8if = 2 I INo) (MoI8IM o) (Nol· (A3S) 
tL Af,,\' 

With these formulas we now treat the contraction products 
of the two Pauli currents (Nllauflb IN2 ) (N3lcifd IN4 ) 

and (NllaO' b IN2 ) (N3Icu~d IN4 ). Here a, b, c, and dare 
arbitrary 2 ~ 2 matrices. With the help of (A32) the spinors 
INo) (A36) can be completely eliminated. The very general. 
formulas (3.11) for the contraction ofa product of two Pauh 
currents are obtained. Here we notice two useful specializa­
tions which can be derived with (A32): 

(Nl laufl IN2) (N3 lifd IN4 ) 

= -2N2N3(Nllal-N3)( -N2 IdIN4 ), (A39) 

(Nllu~ IN2 ) (N3 lcifd IN4 ) 

= 2NIN 2 (N3 Icl- N I )( - N 2 1d IN4 ). (A40) 
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APPENDIX B: PRODUCTS OF TWO HELICITY CURRENTS 

Let A and B be arbitrary Dirac matrices. Now we define the product of two helicity currents 

A X B =u~: (p I)A u~~ (P2)U~; (p3)Bu~: (p 4)' (BI) 

We introduce some abbreviations 

M j =Qj~' 

7ft;.,; = [(Ej + Nj pj)lmj ] 1/2, 

E II) In) /3 II) In) 
u,,,.unIIP = 7fa, "'7fan + 7f -a, "'7f -an' 

(B2) 

(B3) 

(B4) 

(B5) 

Now letA and B mean even or odd products of matrices. There are four different types of current products. We introduce 
an operator G which changes all upper vector indices into lower indices and reverse. The four types of current products are 
according to (3.6a) and (3.6b): 

2n 2k 

II Y'(Y5t x II y
V
J(Y5)b = lQIQ3C _ M,M, _ M,M,III- Ilu,bQG (MilO'/" './' 2n IMz)(M3 10'v,·. V2k1M4) 

i j 

(B6) 
2n + I Zk + I 

II . .f'i(Y5)Q X II Vi( )b - Ie (M 1-'" . '/'2n + '1M) (M 100v, . V2k + '1M) r Y Y5 - 4'"'M,M,M,M,111 _ II" + bQG I U' .. 2 3 . . 4 
i 

2n + I 2k 

II yi(Y5txII y
V
J(Y5)b = !Q3EM,M,_M,M,III_ I)u+ bQG (Mild". './'2n+ 'IMz) (M3 10'v,·. V2kIM4) 

i j 

(B8) 
2n 2k + I 

II . .f'i(Y5)aX II Vi( )b - IQ e (M I '/' 2n IM ) (M I v,' V2k+ '1M) r Y Y5 -4 1'"'-M,M,M,M,III-I)"+bQG 10'/". Z 30'·· 4 
i j 

+!( - l)bQIQ3Q4E _ M,M, _ M, _ M.III- l)a+bQG (MilO'/" './'2n IMz) (M310'v,·. 'V2k +' IM 4)' (B9) 

The specialization of these formulas and the application of (3.11) for the contraction of Pauli currents produce all current 
products required in the calculation of scattering amplitudes. We notice some of these as examples: 

1 X 1 = !QI Q2E _ M,M, _ M,M.JIQ (MIIM2 ) (M3I M 4) 

+ iQIQ4LM,M,M,-M.IIQ(MIIM2)(M3IM4)' (BIO) 

1" X yV = !CM,M,M,M,IIQG (MIId'IMz) (M3 10'vIM4) 

+ !Q3Q4EM,M, - M, _ M.IIQG (Mild' 1M2 ) (M310'v IM4 ), (B 11) 

Y/, X1" = !CM,M,M,M.IIQ·( - 2)MzM 3(MII- M 3)( - M 21M4) 

+ !Q3Q4CM,M, - M, - M.IIQ .2(MI IM4 ) (M3IM2), 

1"YvX Y'yT = !QIQ3L M,M, _ M,M.IIQG (MilO'," O'vIMz) (M310'pO'TIM4) 

+ !QIQ4L M,M,M, _ M.IIQG (MilO'/, O'vIM2) (M3 IuPO'T IM4 ), 

y/, yVXY'1" = !QIQ3E-M,M,_M,M.IIQG·2(MIIM4) (M310'pO'vIMz) 

+ WIQ4 L M,M,M, - M.IIQG .2M3M 4 (MIIO'p I - M 3) ( - M 410'vIMz), 

y/,Yv xyv1" = !QIQ3LM,M, _M,M.IIQ·8(MI IM 4) (M3IM2) 

+ lQIQ4L M,M,M, - M.IIQ·4(MI IM2) (M3IM4 )· 

(BI2) 

(B13) 

(BI4) 

(BI5) 

Not all the vector indices of the currents are contracted internally. The remaining Pauli currents (A Id'O'v IB), etc., of the 
amplitudes disappear by contractions with external momenta. In these cases the formulas (3.8) and (3.10) apply. 
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Quasiclassical trajectory-coherent states of a particle in an arbitrary 
electromagnetic field 

v. G. Bagrov, V. V. Belov, and I. M. Temov 
Institute of High Current Electronics of the USSR Academy of Sciences Siberian Branch, pro Akademichesky 
4, 634055, Tomsk, USSR ' 
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In this paper ~e show that fo~ a nonrel~tivistic charged particle moving in an arbitrary external 
electromagnetic fi~ld there eXIst approXImate solutions of the Schrodinger equation, such that the 
quantum-mechan1~al averages of the coordinates and the momenta with respect to these states are 
general exact solutIons of the classical Hamiltonian equations. Such states are called trajectory­
coherent states. The wave functions o~the trajectory-coherent states are obtained by the complex 
germ method by V. P. Maslov. The sImplest properties of these states are studied. 

PACS numbers: 41.70. + t, 03.65.Ge 

1. INTRODUCTION 

The question of the correspondence between the results 
of classical and quantum mechanics is as old as classical 
mechanics itself. It is quite obvious that there is no universal 
method of obtaining arbitrary classical quantities from 
quantum-mechanical ones. Let us explain this in more de­
tail. Assume that one wants, for the conservative system, to 
obtain a classical expression for energy (as a function of any 
parameters of the system), starting from a quantum-mechan­
ical one. It is obvious that in this case one should determine 
the stationary states of the system and then, by the definite 
way, take the limit as fl-D of the quantum-mechanical 
expression for the energy. On the other hand, if one is inter­
ested in obtaining the classical particle trajectory as a limit 
for fl-o of some quantum-mechanical expression, the sta­
tionary states cannot lead to a reasonable classical result be­
cause for such states the coordinate and momentum aver­
ages do not depend on time at all. Hence, to derive the 
classical trajectory as a limit for fl-o of a certain quantum­
mechanical expression one should first of all take care of this 
problem, and determine an appropriate choice of the corre­
sponding quantum-mechanical states. Thus, the mode of 
construction (and the existence of this mode itself) of quan­
tum-mechanical states that are "close" to classical ones de­
pends on the very classical and quantum-mechanical quanti­
ties we want proximity for (or coincidence, if possible). 

Schrodinger I introduced an example of this kind for the 
harmonic oscillator: he constructed a set of states solving the 
Schrodinger equation for which the quantum-mechanical 
averages of the coordinates and the momentum are general 
solutions of the classical equations of motion. Glauberz dis­
covered the same states for free electromagnetic field; in 
these states the quantum-mechanical average of the poten­
t~al operator is a general solution of the Maxwell free equa­
tIOns. (The coherent states of electromagnetic field already 
appeared in Ref. 3; they were studied in Ref. 4.) Such states 
were called coherent states. These states are constructed in a 
quite simple way for quantum systems whose effective Ha­
miltonian is quadratic by the coordinate and momentum op­
erators. The theory of these states has been developed in 
detail. (The most complete statement of this theory is pre­
sented in Ref. 5.) 

At present the coherent state sequence is assumed to be 
determined as a complete system of quantum-mechanical 
states that are integrals of motion. (The discussion of this 
determination may be found in Refs. 6 and 7.) A quite rea­
sonable conviction has developed that coherent states, in a 
certain sense, are the closest to classical. In particular, for 
the quadratic systems the coordinate and momentum quan­
tum-mechanical averages are solutions of the corresponding 
classical Hamiltonian equations, and for the case of quadrat­
ic systems with constant coefficients the coherent states at­
tain the minimum of Heisenberg uncertainty relations. 

However, it follows from the Ehrenfest theorem that if 
the Hamiltonian operator of the system is not quadratic 
there are no states in which the mean quantum-mechanical 
trajectory would exactly coincide with a classical one. Thus, 
the question of constructing quantum-mechanical states giv­
ing mean trajectories that coincide with classical ones in the 
limit fl-D is not a trivial one. Such states, if any, are called 
trajectory-coherent states (TCS). 

The aim of this work is to prove the following state­
ment: for a nonrelativistic charged particle moving in an 
arbitrary electromagnetic field there always exist approxi­
mate solutions of the Schrodinger equation, such that the 
coordinate and momentum quantum-mechanical averages 
are exact solutions of the corresponding classical nonrelati­
vistic Hamiltonian equations. These solutions are construct­
ed explicitly and an estimate of their accuracy is obtained. In 
other words, we construct approximate TCS which give an 
exact classical trajectory. In addition, we generalize the re­
sults obtained to the case of a nonrelativistic particle de­
scribed by the Klein-Gordon equation. 

The basis of our construction is the complex WKB 
method by V. P. Maslov that is the complex-germ theory.8-1O 

2. NOTATION 

In order .to avoid overcrowding further statements, we 
start by descnbing the basic notations that will be used be­
low. We denote the coordinate and momentum vectors by X 
!XI: X z, X3)~ P ( PI' !'z, P3). In quantum theory the operator p 
IS gIven by p = - IhV, Vi = ax' The partial derivatives are 
designatedasaxi = a/axi,api ;' a/api' The classical Hamil­
tonian of the system is 
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H(x, p) = (2m)-I(p - A)Z +,p. (1) 

The particle charge e and the velocity oflight are included in 
the electromagnetic potentials A = A(x, t ),,p =,p (x, t) 
which are taken in the Coulomb gauge div A = O. The opera­
tor H (X, P) is obtained from (1) by substitutions p--+P. The 
time functions X (t ) and P (t ) are solutions of the classical 
equations 

x(t) = apH(x, pI, P(t) = - axH(x,p). (2) 

We suppose everywhere that the general solution, X(t) and 
P(t), ofEqs. (2) is known. The Schrodinger equation has the 
form 

LIfI=O, L=H(x,p)-ifWt . (3) 

Furthermore we introduce the 6 X 6 matrix dY(X, PI, writ­
ten in the form of four 3 X 3 blocks 

_1-Hxp(X,P) 
dY(x,p)- H ( ) pp x, p 

-Hxx(x, P)I 
Hpx(x, p) , 

(4) 

where, for example, the blocks Hxx (x, p) and Hxp (x, p) are 
defined as 

(Hxx(x, p))ij = ax,axjH (x, pI, (Hxp(x, p))ij = ax,apjH (x, pl. 
(5) 

In the case of the Hamiltonian (1), it is easy to find 

(6) 

The scalar product of three-dimensional vector is designated 
by French quotes ( ). If in some expression dependent on X 
and P, after performing all the operations (e.g., after taking 
partial derivatives with respect to x and pI, the substitution 
of X = X(t ) and P = PIt ) is made, this expression will be de­
signated by the same letter with the argument t [e.g., 
H (t ) = H (x, p) with X = X(t), P = PIt I], 

The expression Rx, where R is a 3 X 3 matrix, x is a 
vector, designates the vector y = Rx with the components 

3 

Yi = L RjkXk • 
k=1 

3. THE VACUUM TCS 

(7) 

Introduce 3 X 3 matricesB (t land C (t ) that are the solu­
tions of the system of differential equations 

(~) = dY (B) B (0) = diag(b l , bz, b3 ), 

C (t) C ' C(O) =E, (8) 

where E is the unit 3 X 3 matrix, and bi are complex numbers 
obeying the condition 

1m b j > 0, i = 1, 2, 3. (9) 

A simple argument borrowed from Ref. 9 (see also Ref. 
11) shows that C (t ) in nonsingular: explicit calculation, using 
the special form (4) of H (t), shows that (C + B - B +C) = 0, 
=?VxER 3, x#O: 
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(Cx, Bx) - (Bx, Cx) = (x, B (O).x) - (B (O).x, x) 
3 

= 2i L 1m bk IXk IZ#O=?Cx#O. 
k=1 

Analogous arguments show that Q (t ) = B (t )C - I(t ) is sym­
metric (i.e., equal to its transposed matrix and that 

1m Q(t»O. (10) 

For the matrix Q (t ) it is not difficult to obtain the equa-
tion 

Q + QHpp(t)Q + QHpx(t) + Hxp(t)Q + Hxx(t) = 0 

and the equality 

mj = J tr Q, J = J (t ) = det C (t ). 

(11) 

(12) 

Equation (12) follows from the Lewill theorem8 taking into 
account Eqs. (11) and (1). 

We introduce also the function of WKB-solution type 

lfIo(x, t, ii) = N (ii)(/> (t ) exp[iii- I S (x, t I], (13) 

where the phaseS (x, t ) is the complex-valued function [in the 
standard WKB method (see e.g., Ref. 12) the phase is real 
valued]. 

S(x,t)= Sa' [(p(t),x(t)-H(t)]dt 

+ (p(t), x - x(t) 

+ !(x - x(t), Q (t)(x - x(t))) (14) 

while the amplitude and normalization are 

(/>(t) = [J(t)]-1/2, 

N(ii) = [(1rl1)-3 1m b l 1m bz 1m b3]1/4. (15) 

On account of(1O) we have 1m S (x, t) > o for the phaseS (x, t) 
and therefore the function (13) decreases exponentially in 

Ix12, at the fixed t, for Ixl--+oo (Ixl = ~ (x, x), xER 3). 
The function (13) is an approximate solution of the 

Schrodinger equation in the limit~. The estimation of 
accuracy of this approximation is defined by the following 
theorem. 

Theorem: Let the potentials A, ,p be smooth functions 
tending to zero as Ixl--+oo, together with all their derivatives. 
Then 

L lfIo(x, t, ii) = fo(x, t, ii) (16) 

with, in the limit ~, the following bound on the L z -norm 
offo(x, t, h ): 

Ilfo(x, t, ii)11 2 ';;;ii3(CI + iiZC2), O.;;;t.;;;T, 

C I = max max IlaxaxA(t)l, lax a" ax A(t)l, 
t Ijk I J I } k 

lax ax ax ,p(t)l, IQ(t)lJ, (17) 
, J k 

There I Q (t ) I is a norm of the matrix Q (t ). 
We now proceed to prove this theorem. We apply L [see 

Eq. (3)] to lfIo(x, t, h ) and we obtain thus the equality 

L(/> (t) exp [iii-IS (x, t)] = exp [iii-IS (x, t)]l (/> (t HatS 

+H(x, VS)]-iii7T(/>(t)J, (18) 
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where;' is the transfer operator 

fr = at + m-1(VS - A, V} + ¥is - iliJ). (19) 

We now expand the right side of the formula (18) into its 
Taylor series in the neighborhood of the point X(t) [i.e., in 
powers of Xi - Xi (t )] up to the 4th power inclusive, making 
use of the symmetry of the matrix Q (t), of the Eqs. (11), (12), 
and of the equalities following from (6), (14) 

VS = pIt) + Q(t)(x - x(t)), 

ats = - H(t) + (W), x - x(t)} - (x(t), Q(t)(x - x(t))} 

+ ! (x - x(t ), Q (t )(x - x(t )}). (20) 

As a result we have 

/o(x, t, Il) = (6m)-I!po(x, t, Il)[ ~ Hijk(t )(Xi - xi(t ))(Xj 

- xj(t )(Xk - X k (t)) + (x - x(t), 

D(x-x(t))) +R4(X,tJ], 

Hijdt) = (ax,A(t), axjax.A(t) + (axjA(t), ax;ax.A(t) 

+ (ax.A(t),ax,ax}A(t) + Ia:;a::a:~ 
n, 

x [m<p (t) - (x(t), A(t)], (21) 

where the sum over the nj is a sum over all sets of integer 
nonnegative numbers nj (i = 1,2, 3) satisfying the condition 
n 1 + nz + n3 = 3. The elements ofthe matrix D are deter­
mined by the relation 

D jk = (Q (t )(x - x(t)), ax;axkA(t I). (22) 

The remainder term R4 of the Taylor series is bounded by 

(23) 

By integrating the square of the modulus of the expression 
(21) over the space R 3, taking into account the trivial integral 

Loo oo xZn exp ( - xZ/Il) dx = Iln + Il2r(n +!) (24) 

and using smoothness of the potentials A, <p and the Koshi­
Buniakovsky inequality, the proof of the theorem is ob­
tained. 

In conclusion we note that analogous results were ob­
tained in Ref. 14 for a particular case of A = 0, <p = <p (x). 

4. EXCITED TCS 

Let us denote the three-dimensional complex vectors 
thatarethecolumnsofthematricesC(t )andB (t )by Zi(t land 
W;(t) (i = 1,2,3), respectively. We introduce the "general­
ized" annihilation and creation operators 

Gi(t) = (21l 1m bi )-1/2(Zi(t), p) - (Wi(t), x»), 
(25) 

a/ (t) = (21l 1m b;}-1/2( (zr(t), p} - (Wr(t), x}). 

The basic properties of these operators 

[aj> a/ ] = 8ij' [aj> aj ] = [a/, a/ ] = 0 (26) 

can be checked by direct calculation. In the same simple way 
it is found that 
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(27) 

where the functions ad t ), which are eigenvalues of the opera­
tors a;(t), are the simplectical scalar products13 

ai(t) = (21l 1m bj )-1/2( (Z..(t), p(t) - (Wj(t), x(t)}). (28) 

The statement that the operators aj (t) and a/ (t ) are symme­
tries of the Schrodinger equation (3) in the limit of Ii---+O is 
somewhat less obvious. We shall take this statement to be 
true if the commutational relationships 

[ai(t), L ]!P = 0 W12 ), [a/ , L ] !P = 0 (1j3/Z) (29) 

are satisfied over the set of approximate solutions of the 
Schrodinger equation 

!P (x, t, Il) = <p (x, t, Il) exp [ill-IS (x, t I], (30) 

where <p (x, t, h )EJ>, P the set of polynominals in Il- 1/2 
[x - x(t )] with time-dependent coefficients. 

From Eq. (18) it is easy to obtain 

exp [- ill-1S(x, t)]i exp [ill-IS(x, t)] 

= -illfr+0(1l3/2), (31) 

where fr is defined by (19). Here and below we use the nota­
tion 0 (Ila ) for any operator which, when applied to 4JeP, 
yields a vector with L z-norm 0 (Ila) when multiplied by 
exp [ill-IS (x, t)]: 

V4JeP:llexp [ill-IS (x, t)O (Ila)</> II = 0 (Ila ). 

Further we have 
A. 

exp [ - ill-IS(x, t )]a;(t) exp [ill-IS (x, t)] = Ai(t) + ai(t), 

exp [ - ill-IS (x, t)]a/(t) exp [ill-IS(x, t)] 

= ..1/ (t) + ar(t). (32) 

Here a i (t) is defined by the formula (28), while 

Ai(t) = (21l 1m bi )-1IZ(Zi(t), p), 

A /(t) = (21l 1m bi )-1/2(Zr(t), p) 

- (Wr(t) - Q (t )Zr(t), x - x(t)). (33) 

As an example, we calculate the commutator [a/ (t ) 
- ar(t), i ], applied to the functions (30). Using (31)-(33) 

we have 

[ a/ (t ) - ar(t ), i ] !P 

= exp [ill-IS (x, t)l! - ill[Aj(t), fr] 
+ [A / (t), 0 (1j3/2)] J<P (x, t, Il)}. (34) 

The class of the functions <p (x,t, 1l)EJ> is invariant under the 
operators A (t), A +(t). Hence, it follows 

[A / (t ), 0 W12)] = (} (1j3/Z). 

Hence, it would be enough to show that the commutator 
[A,.(t), fr] is an operator of type 0 (1l1/

2
). By expanding this 

operator in a power series of x - x(t ) up to the 3rd term 
inclusive, using (11), (12), and (20) we have required state­
ment. 

From the property (29) and the invariance of the P-class 
relative to the operators a/ (t ), A / (t ) it follows that the 
functions 

3 

!Pn;(x, t, Il) = II (n i !)-1/2[ai(t) - ar(t)r'!Po(x, t, Il) (35) 
;=1 
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are approximate solutions ofthe Schrodinger equation with 
respect to mod 0 (h 3/Z). 

5. BASIC PROPERTIES OF TCS 

1. The set of the functions lJin, (x, t, Ii) is an orthonormal 
system. This statement is checked by the direct calculation. 

2. The functions lJin,(x, t, Ii) form a complete system. 
This analogy can be used to establish the completeness for 
the lJin" which can now be proved by a word for word tran­
scription of the corresponding standard proof for the com­
pleteness of the Hermitian functions Un (x), 

Un (x) = Cn exp (- x2/2)Hn(x), Hn(x) = 2n(b +r <1>0' 

d 
2b = - + 2x, <1>0 = 1. 

dx 
(36) 

Using the relations (32) and (33) the functions lJin,(x, t, Ii) can 
be represented in the form 

lJin,(X, t, Ii) = Cn lJio(x, t, Ii) IT [A ;+ (t) r'<po, <1>0 = l. 
; 

(37) 

Thus the lJin,(x, t, Ii) constitute a three-dimensional general­
ization of the Hermitian functions Un. The completeness 
relation may be established now by the method that is a word 
for word repetition of the corresponding calculations for os­
cillator functions. 

3. The quantum-mechanical means X and :Ii calculated 
by functions IJin,(x, t, Ii) don't depend on ni and coincide (ex­
actly) with x(t) and p(t). One may easily check this property 
by direct calculation. Thus x(t ) is the center of the wave pack­
et lJin, (x, t, Ii). By analogy, p(t) is a center of the wave packet 
lJin,(p, t, Ii) of the TCS inp-representation. The form and 
properties of the functions lJin, (p, t, Ii) are determined by the 
form and properties of the functions IJin , (x, t, Ii) with the sub­
stitutions 

x~p, x(t )~p(t), C (t)---+ - B (t), B (t )---+C (t). (38) 

4. In case the operator H (x, p) is a quadratic function in 
the coordinates and momenta, with coefficients that are ar­
bitrary functions of time, the TCS are exact solutions of the 
Schrodingerequations, anda; (t) anda/ (t) are exact symme­
tries of this equation. 

5. Quasiclassical trajectory-coherent states of a spin less 
relativistic particle in an arbitrary electromagnetic field. 

Now we construct trajectory-coherent states for the 
Klein-Gordon equation describing the motion of a spinless 
relativistic charged particle in an arbitrary electromagnetic 
field. This equation, in view of the above notation, has the 
following form: 

[liM, - ecjJ )2 - (icliV - eA)2 - m 2c4
] lJi = O. (39) 

Here, the electromagnetic field potentials A and cjJ are 
taken in the Lorentz gauge a,cjJ + C div A = O. 

Let us denote by lJi + (x, t) a positive-frequency normal­
ized solution of the Schrodinger-type equation 

L+ lJi + = 0, L+ = iM, - H(x, p, t), f lJi*r lJi +d 3x = 1, 

(40) 
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where, in difference with Sec. 2, the pseudodifferential oper­
ator H (x, p, t), that is a nonlocal "Ii-I," is defined by the 
formula 

H(x, p, t)lJi +(x, t) 

= (27rll)-3/2 J exp [iii-I (x, p)]H (x, p, t)if! +(p, Ii, t)d 3p . 

(41) 

Here if! +(p, Ii, t) is a "Ii-I" Fourier transform for the func­
tion if! + (x, t), that is 

if! +(p, Ii, t) 

= (27rll)-3/ 2 J exp [ - iii-I (x, p)] lJi +(x, t)d 3X • (42) 

The function H (x, p, t ) is a classical relativistic Hamiltonian 
function 

H (x, p, t) = ecjJ (x, t) + t +(x, p, t), 

t+(x, p, t) = ([cp - eA(x, t W + m 2c4
)1/2. (43) 

We suppose the general solution x(t) and p(t) of the classical 
Lorentz equations to be known. In the Hamiltonian form, 
these equations coincide with Eqs. (2) with Hamiltonian (43). 
We furthermore introduce the matrix JY'(x, p) analogous to 
the matrix (4). The block elements of this matrix calculated 
in the points of the classical relativistic trajectory defined by 
x(t) and p(t) have now the form 

(Hpx(t))ij =(Hxp(t))j~= [ex; (x(t), VxAj(t) -ec2ax,A;(t)] 

X [Ct+(tW- 1
, 

(Hxx(t ))i; = e [c1t +(t )ax,ax,cjJ (t) + ec2 (ax,A(t), axjA(t) 

- Ct +(t )(x(t), axax A(t) - e(i(t), ax A(t) , } , 
X (i(t),ax}A(t)] [c2t+(t)]-I, 

(44) 

Heret +(1) = t +(x(t), p(t), t). Solving the set of equations (8) 
with the matrix (44) we construct the normalized vacuum 
relativistic TCS solution ofWKB type lJi +o(x, t, Ii) as fol­
lows: 

lJi +o(x, t, Ii) = N(Ii)<I>(t) exp [ili-IS+(x, tIl, 

N(Ii) = [(7rll)-3 1m b l 1m bz 1m b3]1/4. 

(45) 

Here the relativistic complex phase S + (x, t) differs from (14) 
and is defined by the formula 

S+(x, t) = Sa' 1(x(t), i(t), t )dt + ( p(t), x - x(!) 

+ !(x - x(t), Q(t)(x - x(t))), (46) 

where.Y is the relativistic Lagrangian on the trajectory 
1(x, i, t) = - mc2(l _(32)1/2 - e[cjJ (t) 

- c- 1 (i, A(t)], cj3 = i. (47) 

The amplitude <P (t ) and the matrix 0 (t ) are defined in Sec. 3. 
Relations (25) introduce the annihilation and creation 

operators that are constructed by the formulas (35). 
lJi + nk (x, t, Ii) are excited relativistic TCS's. The precision 
with which the relativistic TCS constructed satisfy equation 
(40) is defined by the theorem from Sec. 3. The operator L+ 
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on the solutions (45) can be estimated in the norm L 2(R 3) as 
follows 

~ 3/2 IlL + '/I + nk II <RfI , (48) 

where the constant R, analogous to C I from (17), depends 
linearly on the maximum, with respect to tE[O, T], of the 
second-order derivatives of electromagnetic field potentials 
derived for the points of the classical relativistic trajectory. 

The relativistic TCS's constructed here satisfy the origi­
nal Klein-Gordon equation (39) with the accuracy h 3/2 at 
f!----.O, the probability density for Eq. (39) on the approximate 

solutions being, accurate up to the members 0 (~), 

p=r€+(t)I'/I+nkI2, r=const>O (49) 

and from this it follows that p > O. 
It is interesting to note that, in difference with the non­

relativistic case, the TCS's constructed here are not exact 
solutions even in the case of stationary uniform fields or for a 
free particle. The well-known exact coherent states of a rela­
tivistic electron 7 are partially coherent and can be obtained 
by the complex germ method on the basis of the complex 
Hamiltonian formalism for narrow beams; however, this de-
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viates from the framework of this paper. 
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We study a mathematical structure of the Ohm-Navier-Stokes system that describes the 
incompressible dissipative evolution of a plasma. We apply the nonlinear semigroup theory and 
construct a unique regular solution which satisfies the system at least locally-in-time. We show 
that, for small initial data, this solution solves the system globally-in-time. We also introduce 
another scheme to construct solutions for less regular initial data. 

PACS numbers: 52.30. + r, 52.55.Ke, 02.30. - f 

I. INTRODUCTION 

The dynamics of magnetically confined plasmas are at­
tracting strong interest, especially in their relation to nuclear 
fusion technology.! Here we discuss an analytical structure 
of the following Ohm-Navier-Stokes system that describes 
incompressible dissipative dynamics of a magnetofluid.::.3 
We consider the initial-boundary-value problem of the sys­
tem (see Sec. II) 

a,B = (1]/J.lo}D,B + VX(vXB), V·B = 0, 

a/v = v/iv - (v·V)v + [(VXB)XB/,uo - Vp]lp, V·v = 0, 

where B is the magnetic flux density, v is the macroscopic 
fluid velocity,p is the thermal pressure; 1] is the resistivity, v 
is the kinematic viscosity,p is the mass density, and,uo is the 
vacuum permeability. We assume 1], v, andp are constants. 
This system is closed because it is decoupled with the mass 
and energy (entropy) equations, since we assume the incom­
pressibility of the fluid. Since we consider temporally homo­
geneous boundary conditions for B and v [see (2.5) and (2.6)], 
this system is autonomous. 

In this paper we apply the semigroup theory in func­
tional analysis and construct regular solutions of the Ohm­
Navier-Stokes system. For an autonomous system, the solu­
tion with initial value uo, ifit exists uniquely, can be written 
as T(t }uo and the solution operator T(t) (t;;,O) has the semi­
group property T(t )·T(s) = T(t + s) (t,s;;'O), T(O) = I (identity 
operator). The semigroup theory studies the existence and 
analytical property of semigroups. The idea for this theory 
comes from the concept of Laplace transformation that is a 
tool used to solve autonomous ordinary differential equa­
tions. Therefore, to study autonomous systems it seems nat­
ural to apply the semigroup theory. A nonlinear theory for 
semigroups in Hilbert space has been developed by Ko­
mura4

•
5

; see the Appendix. We apply this theory to construct 
solutions of the Ohm-Navier-Stokes system. This nonlinear 
semigroup theory has been applied to the usual Navier­
Stokes system in Ref. 6. We will see, in Sec. IV, that the 
Ohm-Navier-Stokes system has a mathematical analogy 
with the usual Navier-Stokes system. The analogy is useful 
to analyze the Ohm-Navier-Stokes system. We introduce, 
in Sec. VI, another method which is analogous to that in 
Refs. 7-9, and construct solutions for less regular initial 
data. 
a'On leave from Department of Nuclear Engineering, University of Tokyo, 

7-3-1 Hongo, Tokyo 113. Japan. 
hi On leave from Department of Mathematics, Nagoya University, Chikusa­

ku, Nagoya 464, Japan. 

We refer the reader to Ref. 10 for the pioneering math­
ematical contributions to the Ohm-Navier-Stokes system. 
The present theory improves on the following points. The 
nonlinear semigroup approach in Sec. V gives a simple proof 
of the existence. The second method (Sec. VI) improves on 
the regularity assumption for the initial data. We allow the 
existence of an externally applied stationary magnetic field. 
For other contributions see Refs. 11 and 12 and Remark 7.2. 

Our results concerned with the Ohm-Navier-Stokes 
system read: There exists a unique regular solution at least 
locally-in-time (Theorems 5.1 and 6.1). If the initial value is 
sufficiently small, the solution solves the system globally-in­
time (Theorems 5.2 and 6.1). 

II. PHYSICAL BACKGROUND 

Let us consider an incompressible plasma with finite 
resistivity and viscosity, which is contained in a bounded 
domain n (C R 3

) surrounded by a perfectly conducting 
smooth wall an. We describe its magnetohydrodynamic 
evolution by the self-consistent macroscopic model 

E = 1]j - vXB, (2.1) 

a,v = vD,v - (v·V)v + UXB - Vp)/p, V·v = O. (2.2) 

Here, E is the electric field, B is the magnetic flux density 
with V·B = 0, j is the current density. We assume 1], v, andp 
are constants. Equations (2.1) and (2.2) are, respectively, 
Ohm's law and the Navier-Stokes system with thejXB 
force. 

When we combine Ohm's law (2.1) with Faraday's law, 

(2.3) 

we get 

a,B = (1]/J.lol/iB + VX(vXB). (2.4) 

Here we use j = J.lo- 1 V X B, Ampere's law with the displace­
ment current neglected. 

We will now discuss boundary conditions. The perfect 
conductivity of the wall implies 

Exn = 0 on an, (2.5) 

where n is the normal vector to the wall an. For v, we have 
the adherence boundary condition 

v = 0 on an. (2.6) 

Let us derive boundary conditions for B. Equation (2.1) with 
(2.5) and (2.6) implies 

(VXB)xn = 0 on an. (2.7) 
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We get from (2.3) and (2.5) 

B'n = g(x) on an, 
where g(x) is a certain function independent of time. 

(2.8) 

To homogenize the boundary condition (2.8) we write 

B=Bp+Bex, 

where Bp and Bex are uniquely defined by 

Bp = VXA in n, AXn = 0 and Bp·n = 0 on an, 

VXBex =0 inn, Bex·n=g(x) on an. 
This expression is called the Hodge-Kodaira decomposition 
for divergence-free fields; see Theorem 7.8.1 (b) in Ref. 13. 
Physically, Bex is the externally applied stationary flux den­
sity which is interpreted as a given function, and Bp is the 
remaining part, the flux density related to the plasma cur­
rent density (j = 11-0- IVXBp). 

Remark 2.1: We postulate the boundary valueg(x) is 
smooth (COO -class). It then follows that Bex is smooth (cf. 
Sec. 6.3 in Ref. 13). 

In summary, we consider the initial-boundary-value 
problem for the system 

atBp = (77/11-0)6Bp + Vx [vX(Bp + Bex )]' V·Bp = 0, 
(2.9) 

atv = v6v - (v·V)v 

+ [(VXBp)X(Bp + Bex)/l1-o - Vp]/p, 

V'v=O, 

with boundary conditions 

Bp·n = 0, (VXBp)xn = 0 on an, 
v =0 on an. 

(2.10) 

(2.11) 

Let us address the system (2.9), (2.10) as the Ohm-Navier­
Stokes system (ONS for short). 

III. MATHEMATICAL FORMULATION 

We interpret ONS as an evolution equation that is an 
ordinary differential equation in a function space. We begin 
with recalling some fundamental function spaces and opera­
tors. 

We first give an operator-theoretic interpretation of the 
dissipative terms in ONS. LetL 2(n ) denote the Hilbert space 
of square-integrable vector functions on n. We denote by 
H min ) the Sobolev space of vector functions which are in 
L 2(n) together with all their derivatives of order,;;; m. We 
define the Laplace operator 2' I in L 2(n ) with boundary con­
dition (2.11) by 

2' I = - (77/11-0)6, 

with domain 

D(2' d = !BpEH2(n); (VXBp)xn = 0, Bp·n = 0 on an ]. 

The operator - 2' 1 describes the dissipation ofthe magnet­
ic field energy. We next define the Stokes operator associated 
with the dissipation of the kinetic energy of fluid motion. Let 
Hu be the closure inL 2(n) of smooth divergence-free vector 
fields with compact support in n. Obviously, Hu is a closed 
subspace of L 2(n ). Let f!P denote the orthogonal projector in 
L 2(n) onto Hu' The Stokes operator 2'2 is defined by 
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2' 2 = - vf!P /;;" 

with domain 

D (2' 2) = I vEll2(n); v = 0 on an] nHu' 

To eliminate V p in the Navier-Stokes systeml4 we apply f!P 
to (2.10), and we have 

at v = - 2' 2V - f!P(v·V)v 

+ f!P [(VXBp)X(Bp + Bex )/l1-op]. 
(3.1) 

We consider ONS in a Hilbert space H = L 2 X H u en­
dowed with an inner product 

(u,u'): = ( (J.Lo-IBp·B; +pv'v')dx, 
JIl 

We denote by lIuJJ the norm l5 of u in H. To simplify the 
notation we introduce a bilinear operator 

b ((X) (X')) _ ( VX(Y'XX) ) 
y 'y' - - 9 (Y·V)Y' + f!P [(VXX')XX]!l1-oP 

for vector fields X, Y, X', Y'. Now ONS [(2.9) and (3.1)] reads 
an evolution equation 14 in H 

~~ = - 2' u + A~ u (t;;.0), u(O) = Uo = (~ ). 

(3.2) 

. r'u: = b (u,u) + b (uex'u), 

where 

( Bp) (Bex) 
u = v ' U ex = 0 ' 

and du/ dt denotes the strong derivative of u. The condition 
V·V = ° in (2.10) is implicitly included in (3.2), while V·B = ° 
in (2.9) is dropped in (3.2). However, if initial value BpO satis­
fies a compatibility condition V·BpO = 0, the first equation in 
(2.9) implies V·Bp = O. 

IV. PRELIMINARY LEMMAS 

We prepare some fundamental lemmas concerning op­
erators 2' I' 2'2 and the nonlinear term in (3.2). 

Lemma 4.1: The linear operators 2' I and 2' 2 are posi­
tive self-adjoint operators in L l(n ) and H u ' respectively. 
Consequently, 2' is a positive self-adjoint operator in H, and 
we can define the power 2''' of 2' for every aER. 

This can be easily proved by the standard argument (cf. 
Chap. 7 in Ref. 16 and Lemma 1 in Ref. 7). 

Lemma 4.2: We have 

(b (u,w l ), wz) = - (b (u,wz), WI) 

for u, WI' w2Ell as far as the both sides are well defined. In 
particular we have ( ff u,u) = o. 

See, for example, Sec. 6.2 in Ref. 11 and Chap. II, 
Lemma 1. 3 in Ref. 17. 

Z. Yoshida and Y. Giga 2861 



                                                                                                                                    

We have the following estimates for the nonlinear term 
(cf. Ref. 7 and Ref. 9). 

Lemma 4.3: For 8, 0<8 < i the estimate 

112"- 6b(u,w)II<C(II2"°ulIlI2"Pw ll + I12"P'ulllI2"°'wlll 

holds with a constant C independent of U and w, if 

8+0+p)i, 8+0'+p')i, 0,0'>0, p,p'>O, 
p + 8 >~, p' + 8 > ~. 
This follows from Holder's inequality, Sobolev's ine­

quality, and the regularity property of 2"a. 
An energy estimate follows from Lemmas 4.1 and 4.2. 
Lemma 4.4: For a regular solution of (3.2) we have the 

energy equality 

~ IIuI1 2 + 2112" lf2u112 = O. 
dt 

The above-mentioned lemmas show mathematical ana­
logy ofONS with the usual Navier-Stokes system. 

V. NONLINEAR SEMIGROUP SOLUTIONS 

We will construct a regular solution ofONS, using the 
nonlinear semigroup theory established by Komura.4

•
5 Most 

of our argument is similar to that in Ref. 6, so we omit the 
detail. To apply the general theory of nonlinear semigroups 
(see the Appendix) we first truncate the nonlinear operator 
jJ!. The general theory gives a unique and global-in-time 
regular solution of the truncated system. Then we check 
whether this solution satisfies the original ONS. 

We consider a truncated operator as follows. Let tPM(S) 
(S)O) denote a cut function such that 

(

1, O<s<M' = M 12, 

tPM(S) = 2 - sIM', M' <s <M, 

0, M<s. 

Let VlM(U) denote tPM!lI2"lf2UIIl. We define the truncated 
operator fiJ M by 

fiJMu= -2"U+VlM(U)JJ!U, D(fiJ M)=D(2"). 

This fiJ M is well defined because Lemma 4.3 implies that 
ff U belongs to H if U is in D (2"). 

Because we have truncated the nonlinear term, we can 
prove, just like Lemma 2.1, in Ref. 6, that 

«( fiJ M - wI)u - ( fiJ M - wI)u', u - u' ) <0 

for all u, u'ElJ ( fiJ M) with w = w(M): = e(M + 112" If2uex 1114 
for some constant e = e(!1); here we use Lemmas 4. 1-4.3. In 
other words, fiJ M - wI is dissipative in H. 

We see the stationary problem 

u - A ( fiJ M - wI)u = I 
is solvable for alII Ell, A > 0; see Lemma 2.2 in Ref. 6. Such a 
dissipative operator fiJ M - wI is called hyperdissipative. 
Summarizing our results, we have 

Lemma 5.1: The operator fiJ M - w(M)Jis hyperdissi­
pative in H. 

Applying the nonlinear semigroup theory, we solve the 
evolution equation duldt = fiJ MU. 

Proposition 5.1: The operator fiJ M generates the nonlin-
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ear semi group T M(t) in H. The function u(t) = TM(t )uo for 
uoElJ ( fiJ M) is absolutely continuous in t)O with value in H. 
Moreover u(t) uniquely and globally solves the truncated 
system 

du /,lJ 
-=36 .. u 
dt '" 

(a.e. t)O), ufO) = Uo. 

For TM(t )uo we have an estimate 

II '%'M rM(t)uoll <e(,,(·M)(1 sill :%'MTM(S)uoll, 
a.e. t)S)O. (5.1) 

This u(t) solves the Ohm-Navier-Stokes system (3.2) at 
least locally-in-time, provided that M is sufficiently large. 

Theorem 5.1: We can choose M I ( = M 12) such that 
M'2>11 fiJMuolllluoll. ThereisaconstantT)To=w(M)-' 
X log (M'2 III fiJ MUolllluol1l such that, for tE[O,T], 
u(t) = T M(t )uo solves the Ohm-Navier-Stokes system 

~ = -:/u +. Vu (a.e. t)O), ufO) = uoElJ(:/). 
dt 

(5.2) 

The proof is similar to the proof of Theorem 4.1 in Ref. 
6. Since this proof is so easy, we give it here for the reader's 
convenience. 

Proof It suffices to prove 112" lf2u(t )11 <M I (a.e. 
t,O<t<7;)). Since (./J!u,u) = 0 (Lemma 4.2), we see 

IIY
lf2

ul1
2 

= < ,:/u,u) = I( .%'Mu,u)I<11 fiJMullllull· 
(5.3) 

The estimate (5.1) gives 

II '%'Mu(t)ll<e"'IMIIII '%'Muoll (a.e. t)O). 

On the other hand, the energy equality Lemma 4.4 yields 

Ilu(t )11 < Iluoll (t)O). (5.4) 

Combine the above three estimates to get 

Therefore we have obtained the desired result. 
We now discuss the global existence for small initial 

data. 
Theorem 5.2: Choose M I ( = M 12) as in Theorem 5.1. 

Then there is a positive constant t = t(M,!1 ) such that, if 
II Y 1/2uoll < t, u(t) = rM(t )uo uniquely and globally solves 
the Ohm-Navier-Stokes system (5.2). 

Proof To show this theorem we use an a priori estimate 

LII2JMU(S)112ds<IIY,/2uoI12+KlluoI12, K=K(M,!1), 

which can be proved similarly to Lemma 4.1 in Ref. 6. To 
derive an upper bound for II fiJ Mu(s)1I this estimate is not 
enough because there may appear narrow spikes in the graph 
of IlfiJ MU(t )11 vs t. The growth rate estimate (5.1), however, 
prohibits such spikes, so we get an upper bound for II.%' Mull. 
This together with (5.3) and (5.4) eventually gives an upper 
bound for Ilx ' /2ull. If the upper bound is smaller than M I, 
u(t) solves ONS globally-in-time. This situation is actually 
realized if the initial data is sufficiently small. For the de­
tailed proof we refer the reader to Theorem 4.2 in Ref. 6. 
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VI. ALTERNATIVE METHOD 

The system (3.2) is parabolic, so it is natural to ask 
whether a unique solution exists for less regular initial data. 
The method in Sec. V requires the assumption that the initial 
value Uo is in D (Y). We give here another method essentially 
due to Kato and Fujita7

•
8

; see also Giga and Miyakawa.9 

Let us sketch their idea. We rewrite (3.2) in an integral 
form 

U(t) = S(t )uo + rS(t - sVVu(s)ds, 
Jo 

(6.1) 

where S (t ) is the linear semigroup generated by - Y and 
U(t) = S(t)a solves the linear equation dU Idt = - Y U, 
U (0) = a. We want to construct the solution of (6.1) by the 
successive approximation 

uo(t) = S (t )uo, 

um+l(t)=UO(t)+ LS(t-s~VUm(S)dS' m>O. (6.2) 

If Bex is equal to zero, we can directly apply the method of 
Kato and Fujita since we have Lemmas 4.1 and 4.3. Ladyz­
henskaya and Solonnikov lo consider (6.2) and get weaker 
results for Bex = O. We do not assume Bex = 0 to get results. 

Theorem 6.1: Suppose IIYI/4uoll is finite. Then there is 
a unique regular local solution of (3.2). If Ilyl/4uoll is suffi­
ciently small, then solution can be extended globally-in­
time. 19 

Proof We prove here that the estimate Ilyaum II 
<Kt a - a, a<a < 1 - 8 (a = 1, 8 = ~) holds with constant K 
for all time if Ily<7uoll is sufficiently small. This is a crucial 
step of our argument. The rest of the proof is similar to those 
in Refs. 7-9, and therefore we omit it. 

Suppose II yaum II <Ka.m t <7 - a, a<a < 1 - 8 for all 
time. We will estimate K a •m + I' Apply Lemma 4.3 to get 

Ily-lib(um,umJlI<CIIY<7umIIIIYPumll (p=~) 
<CKa.mKp.mta+Ii-I. 

For technical reasons we need a trick for Uex ' Since Uex is in 
C'~ (a ) from Remark 2. 1, Iluex 112(a+cl <C'forE,O<E < 1. We 
have Iluex 112(a+ cl <C'/2t c for t, O<t<T(E) = 21/c, since 
lIuex 112(<7+<1 is independent of time. Using Lemma 4.3, we get 

IIY -lib (uex,um JlI<C Iluex 112(a+<1 Ily p- cUm II 
<CIC'Kp_c.mta+li-l, O<t<T(E) 

for all 0 < E <!. Apply ya to (6.2) to get 

yaUm + 1 (t) = yaUO(t) + Lya+IiS(t -slY -liffum ds. 

(6.3) 

On the other hand, Lemma 4.1 yields II ya +Os (t - s)1 II 
<Ca(t - s) - a -lill/li. Estimating (6.3) by this and the above 
two estimates eventually imply 

Ka.m+ I <Ka.o + C2(Ka.mKp.m + C'Kp_ c.m), 
a<a< 1- 8, 

where C2 is independent of m and E. This successive inequa­
lity yields 

Ka.m <K, a<a < 1 - 8 for all m, 
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provided that K a •o and C' are sufficiently small. In other 
words, if Ilyauoll is sufficiently small, we get 

lIyaumll<Kt a- c, O<t<T(E). 

Since K is independent of E, this implies 

Ilyaumll<Kt a- c, t>O, a<a<1-8, 

which is the desired result. 
Remark 6.1: IfweuseLP-theoryin Ref. 9, Ilyl/4uoll in 

Theorem 6.1 is replaced by L 3 -norm of Uo. 

VII. FINAL REMARKS 

Below we list some additional remarks. 
Remark 7.1 (Regularity): Since the solution u(t ) 

= T M(t )uoconstructed in Sec. VisinL 00 (O,T;D (Y)), u(t lis 
the strong solution of the Ohm-Navier-Stokes system. 
Eventually u(t) is in COO ((O,T) Xli); in other words u(t) is a 
classical solution,9 and the statement (a.e., t>O) in (5.2) can 
be replaced by (t>O). 

Remark 7.2 (Weak solutions): Duvaut and Lions II and 
Sanchez-Palencia 12 construct a global but weak solution of 
ONS. It is not known whether their weak solutions are regu­
lar. 

Remark 7.3 (ONS with higher order diSSipation): We 
consider a dissipative operator - Yo with higher-order 
perturbation 

- Yo = - y _Eya, O<E~l, a>~. 

For a perturbed ONS 

du -. 
-= -.Y,u+. lu (t>O), u(O) = uoED(Y,), 
dt 

we can prove the existence of a unique and global-in-time 
solution without assuming that the initial data is small. This 
is because the higher-order dissipation gives an a priori 
bound for Ilyl/2ull. 

Remark 7.4 (ONS with an ignorable coordinate): Here 
we suppose that there is an ignorable spatial coordinate, viz., 
we consider a two-dimensional system. Then, without as­
suming that the initial data is small, we can prove the exis­
tence of a unique and global-in-time regular solution of the 
two-dimensional ONS. We have an a priori bound for 
Ilyl!4u ll, where u is a solution ofONS. This give the above­
mentioned global existence; see Ref. 6. 

APPENDIX: NONLINEAR SEMIGROUP THEORY 

We briefly review the theory of nonlinear semigroups in 
Hilbert space, which is due to Komura4.5 ; see also Ref. 18. 

Let &J be a (nonlinear) operator from a subsetD (&J) of a 
Hilbert space H into H. We say &J is dissipative if (5 - 1J, 
u - v)<O for all u, vED(&J), 5E&JU, 1JE&Jv. A dissipative 
operator &J is called hyperdissipative if the range of 1-).&J is 
equal to H for a certain). > 0, where I is the identity opera­
tor. For simplicity let us assume here that &J is single valued. 
We have the fundamental theorem. 

Theorem: Suppose &J - OJI is hyperdissipative for 
some OJ > O. Then &J generates a nonlinear semi group T(t). 
Moreover u(t) = T(t )uo for uoED (&J) is absolutely con­
tinuous in t>O with value inH. And u(t ) uniquely and global­
ly solves 
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du = aJ u ( 0) J{} a.e. r;p , 
dt 

u(O) = un' 

where duldt denotes the strong derivative of u. The function 
u(t) also solves 

d +u = f!8u (t;pO), 
dt 

u(O) = un' 

where d +uldt denotes the right derivative of u. The semi­
group T(t) satisfied estimates 

II T(t )ua - T(t jwall <eM IIUa - wall, t;pO, ua,woED (f!8), 

II f!8 T(t jUoll <e",lt- sill f!8 T(sjuall, a.e. t;ps;PO. 
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A systematic procedure ensuring the determination of a~l isotropy groups of a given . 
representation of a space group is pres.ented for th~ first tIme. Isotropy gr~ups play an Important 
role in various areas of theoretical sohd state phYSICS. For example, only IS?tropy gr?ups may 
occur in a structural phase transition driven by an order parameter ?elongmg to a gIven . 
representation. The method uses the chain criterion directly on the I~age of the representatlOn, 
employing a labeling of the matrices by space group elements. A not~on of a substar. of a wave 
vector associated with the representation is central to the method. Fmally, as a det~tled 
illustration the method is applied to a structural phase transition in A 15 systems dnven by an X­
point order parameter. The result agrees with previously reported ones. 

PACS numbers: 64.60. - i, 61.50.Em, 02.20. + b 

I. INTRODUCTION 

In calculating various physical quantities we often deal 
not with the full symmetry of the physical system, but with a 
specific representation of this symmetry. For example, if we 
are calculating a perturbation of a certain energy level then 
the wave functions, perhaps degenerate at that particular 
level, span a representation of the full symmetry group of the 
physical system under consideration. In such a case it is use­
ful to know some details about the action of matrices of the 
representation on vectors in the space spanned by the wave 
functions. This is even more apparent in another example 
coming from solid state physics, namely, in the Landau I and 
renormalization-group2 theories of structural phase transi­
tions in crystals. Since the present work was mainly motivat­
ed by various applications of these theories, we will outline 
their content here. 

In the Landau theory symmetry of a crystal at a given 
temperature (pressure, concentration, etc.) is determined as 
the symmetry of an order parameter which minimizes the 
Landau free energy. The Landau theory may be considered 
as an approximate solution of a more general theory. In such 
a theory the order parameter is given as an expectation value 
over a certain distribution. The Landau theory replaces this 
expectation value by the most probable one. This more gen­
eral approach is incorporated in the renormalization-group 
method. However, symmetry results of the Landau theory 
are also relevant to the renormalization-group method. 
Thus, we will concentrate on the Landau theory.3 

We will begin with a general outline of the Landau, 
phenomenological approach. 

The order parameter is a vector from a space Cover 
which a representation R of the high symmetry group Gis 
spanned. On the other hand, the free energy is a family (as 
temperature is changed) of G-invariant polynomials on C. At 
each given temperature, an absolute minimum of the free 
energy is at a vector c in C. This vector is identified as the 

8) This paper is based on an earlier version which was available as a pre­
print of the Institut des Hautes Etudes Scientifiques in March 1982 (Pre­
print No. IHES/P/82/17j. 

order parameter at the given temperature. The associated 
(low-) symmetry group at that temperature is then the largest 
subgroup L of G which leaves c (the order parameter) invar­
iant. That is, L is the isotropy group (little group, stabilizer) 
of c. Consequently, it would be beneficial to know the iso-

tropy groups L of G (for given R). . 
A representation R must first be chosen. R may be m­

ferred from some theoretical arguments, or partially deter­
mined from experiments or determined a posteriori, from the 
requirement that theoretical predictions agree with exper~­
ments. For example, an action of the group G on the atomIC 
displacements of a crystal, with some experimentally im­
posed periodicity, may be analyzed. The resulting represen­
tation can then be reduced and some of its irreducible com­
ponents R may be used as an order parameter. Conversely, if 
R is given, associated displacement patterns may be deter­
mined using appropriate projection operators. 

The next step is to construct a free-energy polynomial 
on C (usually quartic) observing the requirement of G-invar­
iance. Then, in order to find the order parameter, the free 
energy has to be minimized.4 This step is highly nontrivial 
since it involves solving a system of c at least cubic equations 
(e is the dimension of C). There is no general procedure for 
solving such systems of equations exactly. However, after 
sufficiently many trials and errors scientists usually find the 
solutions analytically! This hints that there has to be a syste­
matic procedure for solving those equations. Such a proce­
dure could only be efficient, of course, for the cases of nontri­
vial G-invariance of the free energy. 

This procedure we outline here for the first time.5 All 
the isotropy groups L of G and their subduction frequencies 
ilL ) are found first. The subduction frequency ilL ) is equal to 
the number of times the identity representation of L is con­
tained in the restriction ofR to L. Geometrically, ilL ) is the 
dimensionality of the subspace Fix(L ) of all vectors cleft 
invariant by L. Due to the fact that the free energy is always 
extremal at Fix(L ) in all directions perpendicular to Fix(L ), it 
is sufficient to minimize the free energy only within the sub­
spaces Fix(L ). Moreover, due to the maximality conjecture, 
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an absolute minimum of a quartic free energy is associated 
with a maximal isotropy group (among strict subgroups of 
G ).6.7 Consequently, once the isotropy groups are deter­
mined, we choose the maximal ones. Then, using appropri­
ate projection operators, we determine associated subs paces 
Fix(L ) where an absolute minimum should be found. Due to 
the maximality, these subspaces are often one-dimensional 
and the problem is reduced to solving a single quadratic 
equation (having removed the origin, as the trivial solution 
whose isotropy group is G itself). Therefore, we establish a 
clear relationship between maximality and the solvability of 
the Landau theory. 

Even if the maximality conjecture is not to be found 
valid, a knowledge of isotropy groups helps in systematizing 
a search for absolute minima. Namely, if we know all iso­
tropy groups L, then we can, using projection operators, par­
tition the space C into the subspaces Fix(L ). Searching for a 
minimum first in one-, then in two-, etc., dimensional sub­
spaces Fix(L }, ilL } = 1,2, ... ,c, always removing previously 
found solutions, the problem will again be often reduced to 
solving a single quadratic equation. 

After an absolute minimum has been found, and the 
associated low-symmetry group has been identified, it only 
remains to apply the associated projection operator to the 
atomic displacements in order to determine the actual crys­
tal structure. This would complete within the above mean­
field approach the analysis of a particular transition. 

In order to include fluctuations a renormalization­
group calculation would suffice. Fluctuations have an addi­
tional influence on low-symmetry phases emerging in a sec­
ond-order transition. However, such questions will not be 
addressed here. Instead, we will concentrate only on the 
problem of determining all isotropy groups L of a group G, 
given a representation R, since, irrespective of whether fluc­
tuations are included or not, only such groups may occur in a 
transition. 

The above mentioned problem has been answered by 
the chain criterion in general for discrete (countable) 
groups.8 The criterion states9

: A subgroup L of G is an iso­
tropy group (given R) if and only ifforevery L' ~L, L' ~Git 
follows ilL '} < ilL } (where C denotes a strict subgroup rela­
tionship and < is a strict inequality). Thus, in order to apply 
the chain criterion it is necessary to calculate and compare 
subduction frequencies for all subgroups of G. A technical 
interpretation of the chain criterion is that ilL } is calculated 
for all subgroupsL ofG. Then, foreachi(L) = O,1,2, ... ,c, the 
maximal subgroups are the isotropy groups. 10 However, 
even when G is finite, the above proposed plan may be a very 
elaborate task and several lemmas come to help (some of 
them do not hold for continuous groups)4: 

(i) If L is an isotropy group, so is every L ' conjugate to L 
in G. Consequently, only subgroups up to a conjugation in G 
need to be considered; 

(ii) Kernel of G is the minimal isotropy group (see below 
for a definition of the kernel); 

(iii) If L ' has a strict supergroup L, L 'CL ~ G and 
i(L) = ilL '}, thenL 'isnotanisotropy group. Moreover, none 
of the supergroups of L " which are strictly contained inL, is 
an isotropy group (thUS the name chain criterion); 
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(iv) If Land L ' are isotropy groups, then their intersec­
tion Lr>L ' is also an isotropy group. Moreover, i(Lr>L '} 
>i(L} + ilL '} - i(LL '), (LL ' is the minimal subgroup of G 
which contains both Land L '); 

(v) It suffices to consider only irreducible R for if R is 
reducible, then its isotropy groups are just intersections 
between isotropy groups of its irreducible components; 

(vi) If R is reducible, but physically irreducible, 
R = .J EB.J *, then its isotropy groups are the same as those of 
(either of) its irreducible components, and ilL; R} = 2i(L; 
.J ) = 2i(L; .J *}. 

In the following sections we will present a systematic 
procedure designed to determine all isotropy groups of crys­
tallographic space groups. The presentation will be self-con­
tained. However, due to interests of most physicists some of 
the mathematical rigor will be avoided. The rigorous proofs 
of the theory require a separate paper which will be pub­
lished elsewhere. II 

The plan of the paper is the following. In Sec. II a gen­
eral method and notation will be established. The notation 
related specifically to space groups and a review of some 
elementary theory will be given in Sec. IIA. Section lIB will 
deal with the image of a space group in general, while in Sec. 
I1C some details ofthe representation theory of space groups 
will be reviewed. Section III will be more concretely related 
to the determination of the isotropy groups of space groups. 
In Sec. IlIA a notion of a substar and its associated transla­
tion group will be introduced. In Sec. I1IB a point group of a 
substar will be defined and subsequent simplifications in cal­
culating isotropy groups will be also elaborated. In Sec. IIIC 
some additional technical details will be given. A step by step 
algorithm for calculating all isotropy groups of a space 
group will be given in Sec. IIID. In Sec. IVa detailed illustra­
tion of an actual application of the algorithm will be given. 
The example will concern a nonsymmorphic space group 
o ~ (space group symmetry of Al5 compounds) and its X­
point irreducible representations. The last section of the pa­
per will be devoted to the summary and discussions. 

II. METHOD AND NOTATION 

For a finite group L, ilL ) may be calculated by the for­
mula 

ilL ) = _1_ I x(g}, 
IL 1 gEL 

(1 ) 

where IL 1 is the order of the group L and X (g) are the char­
acters in R. In the case of crystallographic space groups, 
most often (except for incommensurate transitions, that is, 
for representations associated with wave vectors having at 
least one irrational component) a relevant group L contains 
nontrivial translations. Thus, L is discrete (countable) but 
infinite and the above formula cannot be applied. 12 In such 
cases we must consider the group of matrices of the represen­
tation' also called the image, Im(G; R}. When dealing with a 
particular representation R, R is often left out of the notation 
for the image. We will also often use R to name interchange­
ably a particular representation, its actual matrix group (or 
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any of its isomorphic groups; thus 1m G = R), or the homo­
morphism defined by the representation. 

The homomorphism 

g--+p(g), (2) 

where pIg) is a matrix in R representing an element g of G, 
defines a normal subgroup of G, the kernel Ker(G;R). Again, 
we will leave out R in the notation for the kernel. 13 Ker G 
contains all the elements of G which are represented by the 
identity matrix in R. The associated quotient (factor) group 
G /Ker G is equal (isomorphic) to 1m G = R. This means, in 
particular, that a coset decomposition of G with respect to 
KerG, 

G = gloKer G + g20Ker G + ... = RoKer G, (3) 

provides a useful labeling of matrices in R by associated coset 
representatives in G. That is, every matrix p in R may be 
identified (labeled) by a coset representative g; in G /Ker G: 

(4) 

It is important, however, to stress that the coset representa­
tivesg; form a group (isomorphic to R) only under a compo­
sition law which is the same as in G (i.e., 0), modulo Ker G. 
Therefore, given a matrix group L~R it uniquely defines a 
groupL~G 

L = LoKerG, (5) 

where elements in L are replaced by their coset representa­
tive labels according to Eq. (4). 

Since we talk of isotropy groups of G relative to a given 
representation R, it is clear that in order to find isotropy 
groups of G one should first find isotropy groups in R. Asso­
ciated isotropy groups in G can then simply be found using 
Eq. (5). Consequently, it suffices to apply the chain criterion 
to subgroups L ofR. Accordingly, Eq. (1) is replaced by 

i(L) = ilL) = _1 L X(g), (6) 
ILl gEL 

where Land L are related via Eq. (5), g is a coset representa­
tive (matrix) [cf. Eq. (4)] and X is its character (trace). 

In all the relevant cases either all isotropy groups L of 
R, except R itself, are finite (incommensurate transitions, 
irrational wave vectors), or R itself is finite (commensurate 
transitions, rational wave vectors). Thus, every isotropy 
group ofR, except R itself, is finite, and Eq. (6) is applicable. 
On the other hand, since R is irreducible, 

i(R) = 1 

if R is the identity representation (then R is the only one 
isotropy group), or 

i(R)=O 

(7) 

(8) 

in all other cases (R is then the isotropy group of the origin 
c = 0). In what follows we will exclude the trivial case when 
R is the identity representation. 

In order to further motivate the use of coset representa­
tive labels, we note that even though Eq. (6) appears rather 
simple a selection of subgroups of R may be very complex. 
The matrix group R is sometimes a large subgroup ofO(e) or 
Ute). In addition, e is often greater than three. Hence, it is 
unlikely to find R and its subgroups listed somewhere in the 
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literature. On the other hand, direct manipulation of matri­
ces in R requires first their explicit construction and then a 
construction of their multiplication table. 

All this can be avoided by the use of coset representa­
tives whose composition law is simple (0, modulo Ker G). 
Additionally, instead of the complete matrices in R we need 
only their traces (the characters). Finally, even if we had 
known R and its subgroups L, the identification ofthe asso­
ciated subgroups L in G is most easily found using the coset 
representatives via Eqs. (4) and (5). 

We will develop below a systematic procedure (algo­
rithm) for calculating all isotropy groups of a crystallogra­
phic space group. The algorithm will be based on the use of 
the chain criterion and the approach will be designed for the 
use of the full-group representations. 

In the next sections we will establish the notation and 
we will review some elementary facts regarding crystallogra­
phic space groups and their representations. We will also 
introduce a notion of a substar for an irreducible representa­
tion of a space group defining associated translation and 
point groups. 

A. Space group 

A crystallographic space group G is an extension of a 
group of lattice translations T (Bravais lattice) by a point 
groupP (crystallographic) class. 14,15 The abelian group Tis a 
normal subgroup of G, and P is the associated quotient 
group, 

P= G/T. (9) 

We will adopt the ("inverted") Seitz notation for the ele­
ments of G, T, and P. Furthermore, an action of the symme­
try elements on the configuration space will be assumed ac­
tive. Therefore, a general element g of G will be denoted by 

(10) 

where ~ is a rotation-reflection from the point group P and e 
is a translation, not necessarily from T. If e is from T, that is, 
e is a lattice translation, then we will denote it by n or t. 

The action of g on a vector r in the configuration space is 
given by 

(11 ) 

which means that a point r is first rotated by ~ and then 
translated bye. For the composition of group elements we 
will use a symbol 0, to be distinguished from '. Thus, 

g'og" = [e'liP 'Jo[e "I¢" J = {e' + ~ '.e "I~ 'o~ "J (12) 

and 

g-I = {e I~ J -I = [ - ~ -I.e I~ -I J. (13) 

The identity element E, for which we will usually reserve a 
subscript 1, is 

(14) 

where 0 is the null vector ("no translation") and E is the 
identity rotation ("no rotation"). Hence, a general pure 
translation e, which may (8 = n) but need not be in G, is 

(15) 

and 
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(16) 

Similarly. a general rotation-reflection by ¢ which may 
(symmorphic groups) but need not (nonsymmorphic groups) 
be in G. is 

( 17) 

Note the distinction between B rotated by ¢. ¢.B. and fol­
lowed by ¢. ¢oB. 

¢oB=(¢.B)o¢. (18) 

where we employed the short notation of Eqs. (15) and (17). 
In the same notation. Eq. (10) reads 

g=Bo¢. (19) 

In order to associate the elements of P with particular 
elements in G it is convenient. according to Eq. (9). to make a 
coset decomposition of G with respect to T: 

(20) 

Pure translations 1- are not. in general. lattice translations (1-
is called a fractional translation). Consequently. every pure 
translation B. occurring in Eq. (19). can be decomposed into a 
lattice and a fractional translation. 

(21) 

Clearly. fractional translations are not uniquely defined. At 
the beginning of any calculation. it is advisable to fix the 
choice offractional translations. for example as given in Ref. 
16. 

The point group P is conventionally given by [cf. Eq. 
(20)] 

(22) 

with the same composition law as in G. However. we will 
identify P by the complete coset representatives (including 
fractional translations). Quite generally. coset representa­
tives in a coset decomposition of a group G with respect to a 
normal subgroup Twill not form a group with respect to the 
original law of composition (e.g .• nonsymmorphic space 
groups). However. since Tis a normal subgroup. it may hap­
pen that an appropriate choice of coset representatives can 
be made in such a way that they indeed form a group (=P ) 
under the original composition law (e.g .• symmorphic space 
groups). Whenever such a special choice of coset representa­
tives is possible. it is usually advantageous from a point of 
view of practical applications to adopt that particular 
choice. 

We will identify p. generally. by the coset representa-
tives 

(23) 

with the composition law the same as in G. modulo T. A 
general element of P we will denote by p. 

(24) 

Thus. 

p,OPj = nOh. (25) 

where Pi> Pj. h EP and nET. With this particular choice of p. 
Eq. (23). in mind. we rewrite the coset decomposition ofEq. 
(20) simply as 
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G= ToP. (26) 

Similarly. every element of G can now be written as 

g = nop = nO [1-I¢ l = j'z01-0¢. (27) 

This concludes our description of the space group ele­
ments. In the following sections we will introduce further 
definitions associated with a particular choice for the repre­
sentation R of G. 

B.lmage 

It was shown in the introductory part of Sec. II that the 
factor group of G with respect to Ker G. the image. is equal 
to R. Also. a coset decomposition of G with respect to Ker G 
was introduced in Eq. (3). where in the case ofa space group 
g, is of the general form Eq. (10). If we fix a choice of coset 
representatives in Eq. (3). we can identify R as 

R = (gl' g2' ... j, (28) 

with the same composition law as in G. modulo Ker G. That 
is. for every g, andgj from R we can find an uniquegk from R 
and a go from Ker G such that 

g,ogj = gk ogo. (29) 

Therefore. we write the coset decomposition. Eq. (3). as 

G = RoKer G. (30) 

At this stage we identified matrices ofR by the associat­
ed coset representatives. Eq. (28). Thus. in order to find sub­
groups ofR. we do not have to multiply matrices ofR expli­
citly. These matrices we need not even know. Instead. we can 
multiply the associated coset representatives with the appro­
priate multiplication rule. cf. Eq. (29). 

Until this point we only particularized a general theory 
to a space group. Further simplifications in determining iso­
tropy groups of space groups are strictly due to a special 
structure of a space group (e.g .• existence of an abelian nor­
mal subgroup T. etc.). 

The group Ker G is a space group (which degenerates 
into a point group for irrational wave vectors). Its translation 
group (Bravais lattice) is the kernel of T under R. 

Ker(T; R )_Ker T = [0. n2• n3 • ... l; (31) 

Ker T consists of all translations in Twhich are represented 
by the identity matrix in R. Ker Tis a normal subgroup of G 
as well as of Ker G and. trivially. of T. Therefore. we make 
the following coset decompositions: 

G = Ker TOE + Ker Tog; + .... (32) 

Ker G = Ker TOE + Ker Top; + .... (33) 

and 

T = Ker ToO + Ker Tot2 + .... (34) 

whereg' andp' are of the general form Eq. (10) and tis a pure 
lattice translation. The associated quotient groups. with the 
composition law the same as in G. modulo Ker T. are [we 
assume that a particular choice of the coset representatives. 
Eqs. (32). (33). and (34). has been made] 

G/Ker T= (E.g; • ... j, 

Ker P =Ker G /Ker T = [E. P; . .. ·l. 
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and 

T=T IKer T= to, (2' ... J. (37) 

Lattice translations in Eq. (37) can be chosen as all the 
lattice translations of T which belong to a single unit cell of 
Ker T. (Incidentally, we note that it would suffice to use 
Born-Karrmin boundary conditions at a single unit cell of 
Ker T; there is no need to take a limit of infinite periodic­
ity-all the results associated with R are preserved.) There­
fore, 0, (2' (3' '" are fractional translations for the Bravais 
lattice Ker T. Similarly, translations entering g; and p; [cf. 
Eqs. (35) and (36)] can be chosen to be sums of translations 
from T and appropriate fractional translations 7- from Eq. 
(23). 

The quotient group Ker G IKer Tis denoted by Ker P 
because it is isomorphic (equal, modulo T) to a normal sub­
group of P and, furthermore, all of its elements are represent­

ed by the identity matrix in R. However, Ker P is not in 
general the kernel since R is not in general a representation 
ofP. 

In addition to the decompositions, Eqs. (32), (33), and 
(34), we can make now a coset decomposition of P, 

P = EO Ker P + 1T2o Ker P + "', (38) 

noting that the equality is modulo T; that is, once the frac­

tionals in Ker P are chosen we can choose fractionals in P 
so that the equality is exact (this is, of course, not necessary). 
Elements 1T are of the general form Eq. (23). 

We again construct an associated quotient group 

(39) 

with the composition law the same as in P, modulo Ker P. 
With the above identifications we can rewrite Eqs. (33), 

(34), and (38) as 

and 

Ker G = Ker To Ker P, 

T= Ker ToT, 

p=po Ker P. 

Equations (41) and (42) are used to rewrite Eq. (26), 

G = ToP = Ker ToTopo Ker P. 

(40) 

(41) 

(42) 

(43) 

Similarly, Eq. (40) and the fact that Ker Tis a normal sub­
group of G are used to rewrite Eq. (30), 

G = RoKer G = Ker ToRo Ker P. (44) 

Comparing Eqs. (43) and (44) we arrive at a simple formula 
forR, 

R=ToP. (45) 

Clearly, the resulting Eq. (45) is independent of whether we 
made previously left or right coset decompositions (with re­
spect to a normal subgroup). 

Thus, every element p of R can be identified as a pro­
duct of two elements in G: 

(46) 

where (runs through all elements ofT and 1T runs through all 
elements ofP. Furthermore, T is a normal, abelian subgroup 
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of R, and P is the associated factor group (it should be 
stressed again, however, that the composition law in R is the 
same as in G, modulo Ker G). 

Since P is finite and, for representations R associated 
with a rational wave vector, T is finite, it follows that R is 
finite and Eq. (6) is applicable. On the other hand, if R is 
associated with an irrational wave vector then T, and thus R, 
are infinite. However, it is then clear that the only lattice 
translation in Twhich leaves a nontrivial vector in C invar­
iant is the identity (that is, "no translation"). This is just 
another way of saying that the intersection of two incom­
mensurate translation groups is the identity. Hence, in such 
a case an isotropy group L, other than R itself, is a subgroup 
ofP only, thus finite, and Eq. (6) is again applicable. 

Since T is a subgroup ofR it follows that every subgroup 
L of R will have the following structure: 

and 

PL ~P (modulo FL)' 

The quotient group F L, 

FL = T/Tv 

(47) 

(48) 

(49) 

(50) 

is identified by the coset representatives in the coset decom­
position of T with respect to T L' That is 

T=TLoFL· (51) 

Equation (47) implies that every element gL ofL can be 
expressed as 

(52) 

where (L is from T Land 1T L is from PL' On the other hand, 
Eq. (49) implies 

1TL =ILo1T~ =ILo!7-LI¢LJ = !IL +7-LI¢L], (53) 

where IL is from F L (that is./L becomes an additional frac­
tional translation in T L associated with ¢ L in P L) and where 
1T~ is an element ofP~, P~ = PL (modulo FL ), 

P~~P. (54) 

Consequently, a systematic way of finding all sub­
groups ofR would be first to find all subgroups TL ofT and 
all compatible subgroups P~ ofP (for example, P ~ must be 
such as to leave the "lattice" T L invariant). Possible groups 
L = T LOP L are then identified by making appropriate selec­
tions of additional fractional translationslL (oneiL to each 
1T~ !). Therefore, at no point is it necessary to consider expli­
citly matrices of R and their multiplication table. 

Further simplifications will come from the fact that we 
are looking for the isotropy (sub) groups only. These simplifi­
cations will follow from the representation theory of space 
groups. However, before indulging in these intricacies, we 
can state two immediate results regarding isotropy groups: 
R (or G) and E (or Ker G), E consists of the identity element 
only, are isotropy groups having the subduction frequencies 
(R is assumed irreducible, different from the identity repre­
sentation) 
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i(R) = i(G) = 0, (55) 

and 

i(E) = i(Ker G) = c, (56) 

where c, the dimension of the space C, is the degeneracy of 
the representation R. 

We will now briefly introduce the necessary notation of 
the theory of space group irreducible representations. We 
will, when possible, adopt the approach and the notation of 
Ref. 14. 

C. Irreducible representations 

Irreducible representations of space groups are induced 
from particular representations of their subgroups G (k,). 
G (k,) is the little group of a wave vector k, from the first 
Brillouin zone. That is, G (k J) contai!!s all those elements in G 
whose rotation-reflections rp leave k, invariant, modulo a 
reciprocal lattice vector m. Under the action of all elements 
~ of P on kp a set->of different wave vectors [k" k2' 00., k, j, 
called the star of k, and denoted shortly [1,2,oo.,sj, will be 
generated. These wave vectors are in one-to-one correspon­
dence with the coset representatives [7UI~ "j, (J' = 1,2,oo.,s, in 
the coset decomposition of G with respect to G (k,): 

t=~u.k,+m, (57) 

where m is a reciprocal lattice vector. 
A little irreducible representation D k, of G (k,), with 

characters X k" satisfies 

D k'(n) = eik , iiI, (58) 

where n is a pure lattice translation and I is the cIs-dimen­
sional identity matrix (note that we use a plus sign conven­
tion in the exponential, like in Ref. 17, instead of a minus sign 
in Ref. 14). The representation R induced from D k, is given 
in a block-matrix form, 

Pa/3(g) = D ([ PI~ aJ - logo [7f3I~ f3 j), a, (3 = 1,2, 00., s. (59) 

The dotted matrix D (g) is 

D(g) = {Dk'(g), gEG(kd, 
0, giG (kd. 

(60) 

Therefore, the full-group characters of R may be written as 
s 

X (g) = I xu(g), (61) 
a=l 

where 

X u(g) = X ([ 7ul~ UJ - logo [7UI~ uJ), (62) 

and the dotted character X (g) is 

. _ {i'(g), gEG(~,), 
x (g) - 0, giG(k,). 

(63) 

Lattice translations n are represented by diagonal ma­
trices in R, 

Paf3(n) = Oaf3 eik"iiI. 

The associated character is 

(
-» _ C ~ ik"ii Xn--"",e. 

s u~, 

Similarly, the character of any element nog is 
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(64) 

(65) 

X (nog) = ± eik"'iix u(g)· (66) 
a=1 

Consequently, in order to know characters of all elements in 
G, it suffices to know only the partial characters Xu for the 
coset representatives, Eq. (20), forming the group P. 

These are all the results of the representation theory of 
space groups that are required for further simplifications in a 
calculation of the isotropy groups. 

III. ISOTROPY GROUPS 

Using the results established in previous sections, we 
can simplify Eq. (6), which gives the subduction frequency. 
By means ofEq. (61) we first rewrite Eq. (6) as 

ilL) =_1 I I Xu (g). 
ILl gEL "EII.2.···.sl 

(67) 

This can be further developed using Eqs. (47), (52), and (53): 

1 -> -> 
ilL) = I I I X(T(tL oiL 01T~). (68) 

(TEI'.2 .... ,sl ITL IIPL I 'I.ET/.1T/EPI 

The last equation, in conjunction with Eq. (66) gives 

If we introduce the notation 

(70) 

and 

tu(PL) _1_ I ioJiXu(1T~), 
IP L I 1TIEP /. 

(71 ) 

then ilL) can be written in a simple, condensed form: 

ilL) = I ia(TL)tu(PL)' (72) 
UEI ,,2 ... .,'1 

Particularly important is the meaning of iu (T L)' It is 
immediately seen that iu (T L) is the subduction frequency of 
T L for the irreducible representation tofT L (or, more pre­
cisely, of TL = Ker ToT L)' Thus, iu(T L) is equal to one if k(T 
belongs to the reciprocal lattice of TL and it is equal to zero 
otherwise: 

{
I, tETv 

iu(TL) = ->-
0, kuiTL' 

(73) 

where we denote the reciprocal lattice of TL by TL. 
The above result implies that the only LC R with 

ilL) =1= 0 [for ilL) = 0 there is only one isotropy group, L = R] 
are such that their TL contain a nonempty subset 
[ka, kp, .00 J of the star [ 1,2,oo"s J (we will also use the short­
ened notation [a, (3, 00. J for these subsets). The same conclu­
sion may be reached in another way if we first realize that 
ilL) > 0 implies i(T L) > O. Then since 

i(TL) = I ia(TL) ~, 
,IE I ,,2 ... .,.'1 s 

(74) 

we arrive at the same restrictions on T L' Therefore, it ap­
pears that "allowed" translation subgroups T L' that is, the 
only translation subgroups which may occur as the transla-
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tion subgroups of isotropy groups, can conveniently be la­
beled by subsets [a, {3, ... ) of the star [ 1, 2, ... , s j. 

The above derivation hints that TL (rather than TL) is to 
be determined in practice directly from nonequivalent sub­
sets [a, {3, ... j of the star [ 1,2, ... ,s). Here we refer to P-equiv­
alence: [a' ,{3', ... ) isP-equivalent 10 [a" ,{3 ", ... j if, by defini­
tion, there is a rotation-reflection f/J in some pEP (it suffices to 
look for pEP) such that 

... -+ ... -+ ---+ -+ ---+ ) (75) 
!f/J.k"" f/J.kg" ... ) = [ka" + rna'" kg" + rn g", '" , 

where m m/3' ... ETand the equality is the equality of two 
sets rega;ctiess ~f the ordering of elements. An immediate 
consequence of this definition is that the two subsets can 
only be P-equivalent if they contain the same number of 
wave vectors from the star. It should be noted that this P­
equivalence is to be distinguished from aT-equivalence 
which will be introduced in the next section. 

A. Substar. Translation group 

If we take a subset [a', {3 " ... j then we can generate (it 
suffices to stay in the first Brillouin zone of T) a reciproc~l 
lattice TL, in the following way. A general element m L of TL 
is given by 

mL = m + I ,k , + 1/3.k/3' + "', (76) 
where m is a reci;ro~allattice translation, mET, and 
la" 1/3" ... are i~tegers. Therefore, we will denote T L' the 
intersection of TL and the first Brillouin zone of T, symboli­
cally as 

T L = T + [a', {3 " ... j. (77) 

The lattice T L obtained in the above manner may contain 
additional vectors (,,' kr' ... which are from the star but 
which are not in the original subset [ a', {3 " ... j. In such a case 
the subset fa', {3 " ... j may be enlarged by all such vectors 
k ,,' k/3 " , .... The enlarged subset [a',{3', ... , a",{3", ... ) 

a f a, {3, '" j, which is the intersection ofTL and the star 
[1,2, ... ,s), may be used to uniquely label the allowed lattices 
T L' 11 Such a subset, [a, {3, ... j, we will call asubstar. In order 
to distinguish a substar from a subset we will denote a sub­
star by [a, {3, ... ]. By definition 

[a, {3, ... ] = TLn[ 1,2, ... ,s) = (T + [a, {3, ... ])n[ 1,2, ... ,s j, (78) 

which may in turn be taken as the defining relation for a 
substar [a, {3, ... ]. 

The existence of a substar leads naturally to a notion of 
T-equivalence among subsets of a star: two subsets 
[a',{3', ... J and fa" ,{3", ... J are T-equivalentif, by definition, 
they generate the same reciprocal lattice T L' Therefore, a 
substar may be defined as the maximal subset among T-equi­
valent ones. That is, a substar is the union of all T-equivalent 
subsets. In contrast to P-equivalent subsets, two T-equiva­
lent subsets can have a different number of elements. 

Each substar [a, {3, ... ], determines an allowed recipro-
cal lattice T L -T[a,{3, ... ], 

T[a, {3, ... ] = T + [a, {3, ... ], (79) 

whose reciprocal lattice T[a, {3, ... ], equal to an allowed 
translation group T L, is unique. It should be remembered 
that an allowed translation group T[a, {3, ... ] is always given 
by 
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T[a,{3, ... ] = Ker ToT[a,{3, ... ]. (80) 

The following remarks should help us to choose a strat­
egy for determining all possible subs tars and associated lat­
tices. 

If a subset [ a', {3 " ... J generates a substar [a, {3, ... ], then 
a subset [a", {3", ... ) which satisfies 

[a',{3', ... JCfa",{3", ... J~[a,{3, ... ] (81) 

needs not to be considered since it would generate the same 
subs tar. Furthermore, if ka is in a substar then -+- ka belo,!gs 
to the associated T[a, {3, ... ]. Thus, whenever ka and - ka 
belong to the star, then ka and - ka occur in the same 
substars. Note also that the star [ 1,2, ... ,s) is trivially a sub­
star and 

T[I, 2, ... , s] = E. (82) 

We can also consider an "empty" substar, denoted [0], in 
order to obtain 

T[O] = T, (83) 

which leads to L = R. 
An effective procedure for determining substars and as­

sociated translation subgroups is to work in an ascending 
fashion from one vector subsets to the full star. Working in 
an ascending fashion means that a subset should be exam­
ined before any other subset containing it has been exam­
ined. In this process the above-mentioned remarks, and in 
particular Eq. (81), should be observed. Furthermore, one 
needs only to consider non-P-equivalent subsets [see Lemma 
(i) in Sec. I]. Following this procedure a set of all substars [a, 
{3, ... ] and a set of associated translation subgroups 
T[a,{3, ... ] will be found. We emphasize that these will be the 
only possible translation subgroups of the isotropy groups. 

Utilizing the above results the subduction frequency of 
T[a, {3, ... ], Eq. (73), is 

. {I, £TE[a,{3, ... J, 
1,,(T[a, {3, ... ]) = 0 [{3] 

, £TEl: a, , .... 
(84) 

As a consequence the subduction frequency of an isotropy 
group, Eq. (72), is simplified to 

i(L)= I fa(PL)' (85) 
ae[a.g . ... [ 

where 

L = T[a, {3, ... ]oPL (86) 

and [a, {3, ... ] is a substar. 
The quantity fa (P L) needs to be calculated next. Thus, 

any further simplifications will stem from an analysis of PL' 

B. Substar. Point group 

In the following analysis we will assume a substar 
[a, {3, ... ] and the associated translation group T[a, {3, ... ] to 
be determined. This automatically restricts possible addi­
tional fractional translationsfL associated with the elements 
in PL' They must, cf. Eq. (50), belong to the quotient group 
F[a, {3, ... ], 

F[a, {3, ... ]-T/T[a, {3, ... ]. (87) 

An obvious restriction on rotation-reflections ¢L ofP L 
is that they must leave the lattice T[a,{3, ... ] invariant. Due to 
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the maximality property of substars (with respect to T-equiv­
alencJ!), this restriction on ~L is equivalent to a requirement 
that rPL should leave the substar [a, /3, ... ] invariant (modulo 
T). Therefore, we are naturally led to generalizing the notion 
of a little group: the little group R[a, /3, ... ] of a subs tar 
[a, /3, ... ] is a subgroup of R which consists of all elements 
whose rotation-reflections leave the substar invariant. The 
associated little space group is given after Eq. (5) as 

G [a, /3, ... ] = R[a, /3, ... ]oKer G. (88) 

Similarly, the little point-group P[a, /3, ... ] of a substar 
[a, /3, ... ] is a subgroup of P which consists of all elements 
whose rotation-reflections leave the subs tar invariant. Note 
that 

P [a,/3, ... ] = P[a,/3, ... ]0 Ker P. (89) 

Hence, 

R[a, /3, ... ] = ToP[a, /3, ... ] (90) 

(the set R[a, /3, ... ], 

R[a, /3, ... ] = T[a, /3, ... ]oP[a, /3, ... ], (91) 

which is included in R[a, /3, ... ], is not in general a group). 
With the above definitions established we see that an 

isotropy group L must be a subgroup ofR[a, /3, ... ], 

L~R[a,/3, ... ], (92) 

and p;., Eq. (54), must be a subgroup ofP[a, /3, ... ], 

p;. ~P[a,/3, ... ]. (93) 

The difference between P~ and PLo Eqs. (49) and (54), is 
essential due to the possible additional fractional transla­
tions coming from F[a, /3, ... ]. 

The construction of a subgroup L proceeds by choosing 
a subgroup P~ ofP[a, /3, ... ]. P~ is then amended by addi­
tional fractional translations from F[a,/3, ... ] in order to con­
struct PL' A choice of additional fractional translations (sev­
eral different choices may be possible) must be made in such 
a way that L = T[a, /3, ... ]oP L is indeed a group. If such a 
choice is not possible, then another P~ ~P[a, /3, ... ] must be 
chosen. Consequently, a general element 1TI. in PI. will be 
given by Eq. (53) with 

]IEF[a,/3, ... ] (94) 

and 

1T~EP~ ~P[a,/3, ... ]. (95) 

With each 1T~ only one additional fractional translation is 
associated. 18 

Equation (85), with Eq. (71) and Eqs. (86), (94), and (95), 
represent a significant simplification in determining poten­
tial isotropy groups and in calculating their subduction fre­
quencies. These equations are the key to a systematic and 
effective procedure for a determination of all isotropy groups 
ofR. 

Before describing the aforementioned procedure we 
will make several useful technical remarks. 

c. Technical remarks 

It was already mentioned that a choice of new fractional 
translations]L must be made in such a way that the group 
property is satisfied. That is, a composition of two elements 
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1T L I =]L I 01T~ I and 1T L 2 =]L 2 01T~ 2 from P L must give a 
third element 1T L 3 =]L 3 01T~ 3 from PL' More explicitly, 

1TLl 01TL2 = no(tL 01TL] lop, (96) 

where (L is a lattice translation from T[a, /3, ... ], n is a lattice 

translation from Ker T and p is from Ker P. This places a 
severe restriction on possible choices of the additional frac­
tional translations. It is due to this restriction, for example, 
that R[a, /3, ... ], Eq. (91), is not a group in ~ener~l (this is a 
particular choice, P~ = P[a, /3, ... ] and all!L = 0). A direct 
consequence ofEq. (96) is that if [rL I~L J is in P~ and (~L)q 
= E (q is either 1,2,3,4 or 6), then the associated additional 

fractional translations]L must satisfy 

(97) 

where (L ET[a, /3, ... ] and nEKer T. This simpler restriction 
often suffices to make consistent choices of the additional 
fractional translations. 

Another, indirect check of the group property for a par­
ticular choice of the additional fractional translations comes 
from a requirement that the subduction frequency shall be a 
nonnegative integer. This requirement also eliminates some 
of the choices for the point group P~ . 

The next remark regards the actual applications of the 
chain criterion. Namely, from the formulation of the crite­
rion it is clear that subgroups L should be examined in a 
descending fashion. That is, a group L should be considered 
only after all of its supergroups have been considered. In this 
fashion the subduction frequency ilL) of a subgroup L needs 
to be compared with the subduction frequencies i(L') of pre­
viously examined subgroups L'. Ifit then turns out that there 
is a supergroup L' ofL such that i(L') = i(L), then L is not an 
isotropy group; otherwise, L is an isotropy group. 

This principle, proceeding in a descending fashion, is 
useful to apply along two lines. One line is making a selection 
of translation subgroups TL = T[a,/3, ... ] in a descending 
fashion (which is equivalent to selecting substars [a, /3, ... ] in 
an ascending fashion). The other line is that at any given 
T[a,/3, ... ] aselectionofpointgroupsP~ ~P[a,/3, ... ] is made 
in a descending fashion. This is convenient for the following 
reason. IfL' is a supergroup ofL [L' and L are assumed to be 
of the general form Eq. (86)], then there are two possibilities, 

T 1. =TI.' =T[a,/3, ... ] (98) 

or 

TL = T[a,/3, ... ] CTL, = T[a',/3', ... ]. 

In the first case it is necessary that 

P~ CP~, ~P[a,/3, ... J, 

whereas in the second case 

P~ ~P~, ~P[a',/3', ... ]. 

(99) 

(100) 

(101) 

Therefore, when the subduction frequency i(L) is calculated 
it will be compared first with all the supergroups L' of L 
(which will have all been already calculated due to the "des­
cending" principle) with the same translation group 
T[a,/3, ... ] = TL = T L" Then, if there is no such supergroup 
L' with i(L') = i(L), L may be an isotropy group. Otherwise, 
L is not an isotropy group. In case L passes this test, i(L) has 
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to be compared with i(L') of its supergroups L' with larger 
translation groups T[a', P', ... J = T L' (that is, smaller sub­
stars [a', P', ... J) satisfying Eq. (101). These will have also 
been already calculated due to the "descending" principle. 
Then, if there is no such supergroup L' with i(L') = ilL), Lis 
an isotropy group. Otherwise, L is not an isotropy group. 

Suppose that in the second case discussed above there is 
an L' with ilL) = i(L'). Then we can always construct a group 
L", 

T
L

" = T
L

, = T[a', P', ... ] (102) 

and 

(103) 

such that LCL" ~L' (that is, we break LCL' into its equi­
translational, L" ~L', and equirotational, LCL", parts) and 

ilL) = i(L") = ilL'). (104) 

On the other hand, Eqs. (85) and (71) imply 

ilL) = i(L") + I f,,(PL)' (105) 
OEia,iJ. ··hia',/J', .. ) 

where A ,B denotes elements inA butnotinB. Consequent­
ly, ilL) = i(L') implies 

I f(7(PL) = O. (106) 
OEia.iJ. ··hia',/J', .. ) 

Conversely, Eq. (106) implies ilL) = i(L") and L will not be 
an isotropy group. Therefore, the second case is reformulat­
ed: if there is no such supergroup L' [satisfying Eqs. (99) and 
(101)) with Eq. (106) fulfilled L is an isotropy group. Other­
wise L is not an isotropy group. 

As a final remark we mention another merit of the "des­
cending" principle. Due to the chain property of the chain 
criterion, we do not need to compare ilL') and ilL) for all 
supergroups L' of L. It suffices to compare i(L') and ilL) of 
only those supergroups L' of L which have already been 
found to be isotropy groups. Furthermore, due to a similar 
argument it suffices to check only the immediate isotropy 
supergroups L' ofL. That is, an isotropy supergroup L" ofL 
needs not to be compared if there is an isotropy supergroup 
L' ofL which is a subgroup ofL". This general remark ap­
plies equally to equitranslational and equirotational exami­
nations of supergroups of L. We also note that a similar type 
of an argument led to a conclusion after Eq. (106). 

D. Algorithm 

We are now in a position to formulate a systematic step 
by step procedure for finding all isotropy groups associated 
with a particular representation R of G. 

Step 0: As a preliminary step, establish a particular 
choice of P and find partial characters X,,, Eq. (62), for ele­
ments of P. Then, from the character table, find all elements 
nop of Ker G which obey 

X,,(nop) = cis, (J = 1,2, ... , s. (107) 

This automatically gives the elements of Ker T and Ker P. 
Next, construct groups T and P, Eqs. (37) and (39). 

Step 1: Proceeding in an ascending fashion determine 
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all substars [a, p, ... ]. In the process construct all T[a, [3, ... J, 
F[a, p, ... J, and P[a, p, ... ] (Secs. IlIA and IIIB). 

Step 2: Select a T[a, p, ... ] in a descending fashion. 
Step 3: Select a P~ ~P[a,p, ... J in a descending fashion. 
Step 4: Select a set of compatible additional fractional 

translations from F[a, p, ... ] and form L. If no such set exists 
proceed to Step 8. [In Steps 3 and 4 a group property must be 
observed and, for L#R, ilL) must be a positive integer]. 

Step 5: Calculate ilL). 
Step 6: Check, at the same subs tar, whether there is an 

immediate isotropy supergroup L' ofL such that i(L') = ilL) 
[equitranslational examination, Eqs. (98) and (100)). Ifthe 
answer is no, proceed to the next step. If the answer is yes, L 
is not an isotropy group; proceed to Step 8. 

Step 7: Check if there is an immediate isotropy super­
group L' ofL at a substar [a',p', ... J contained in [a,[3, ... J 
such that Eq. (106) is fulfilled [equirotational examination, 
Eqs. (99) and (101)]. If the answer is no, L is an isotropy 
group; proceed to the next step. If it is yes, L is not an iso­
tropy group. 

Step 8: Make the next selection at Step 4. If all selections 
have been tested, make the next selection at Step 3. If all 
selections have been tested, make the next selection at Step 2. 
If all selections have been tested, all of the isotropy groups L 
of R have been determined. 

Step 9: Determine all isotropy space groups L, each one 
associated with each one isotropy group L via Eq. (5). 

The above procedure completely solves the problem of 
determining isotropy groups L. However, several points 
should be emphasized. 

At various stages of calculations Lemmas (i) to (vi) of 
Sec. I may be used as a help and/or as an independent check. 

It is clear that only isotropy groups which are not equi­
valent under conjugation in R need to be considered. In par­
ticular, only non-P-equivalent substars need to be consid­
ered. In the case of a phase transition conjugated isotropy 
groups are associated with different domains of the same 
phase. 19 However, in the case that the conjugation element is 
an improper rotation, the two isotropy space groups may be 
physically different (since an improper rotation changes the 
handedness of the coordinate frame), having different space 
group labels, and both should be listed. 

In the case where R is small or its structure (the lattice 
of subgroups, etc.) known, a direct determination of isotropy 
subgroups may be feasible. Then Steps 1 to 8 are omitted but 
an identification of complete matrices in R and their identifi­
cation with elements in G must be made in Step O. 

When an isotropy space group L has been found its 
elements will be expressed in the same coordinate system in 
which the elements of G have been defined. In order to iden­
tify L as a particular space group a different coordinate sys­
tem, such as given in Ref. 16, may be required. For example, 
if the original coordinate system is translated by 70 and then 
rotated by 'Jo the elements of L expressed in the new coordi­
nate system are exactly the same as those of a conjugate 
space group La, 

La = ! 7al'Ja J -loLo [7al'Ja J, (108) 

expressed in the original coordinate system. 
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The isotropy groups L should be listed by their conven­
tional space-group name with an identification of their Bra­
vais lattices (in terms of the Bravais lattice T) and with an 
identification of the shift of the origin 1-0 , and of relative 
orientation of the axes ~o ({1-01~01 brings L into a standard 
setting Lo while G may be taken from the start in such a 
standard setting). A standard setting may be taken, for ex­
ample, as given in Ref. 16. Additional useful informations to 
be listed are the subduction frequency ilL ) and the number of 
domains different but equivalent under conjugation in G, 
excluding those with different handedness. The equivalent 
space groups which are not conjugate in G should be clearly 
distinguished (they would have !1-01~01 differing by an ele­
ment not in G ). 

In the next section we will demonstrate on a concrete 
example an effective application of the algorithm presented 
above. 

IV. APPLICATION 

In this section we will present a detailed application of 
the algorithm developed above. We will consider a space­
group 0 ~. This space group is interesting for several rea­
sons. For example, many compounds have a crystallogra­
phic structure compatible with this space group. Among 
such compounds are much studied high temperature super­
conductors, like V 3Si, which share A 15 structure. Further­
more, 0 h as a nonsymmorphic space group illustrates pecu­
liarities associated with such a more general case. 

The group theory of 0 h has been discussed by various 
authors20 and the irreducible representations are known. 
These representations may be obtained from several tables of 
space-group representations. 15.17.21 

We choose to consider the irreducible representation 
X(3) (in the notation of Ref. 17). This representation is asso­
ciated with a nonzero wave vector and it is six-dimensional. 
Thus, it offers generality and complexity sufficient for an 
appreciation of the algorithm. On the other hand, this repre­
sentation is sufficiently simple that it can be presented in 
some detail here. X-point representations have also been a 
focus of interest in some theories of electronic structure of 
A 15 high-temperature superconductors. 22.23 

The group 0 ~ has a simple cubic Bravais lattice T. 24 

Therefore, we fix the coordinate frame parallel to the axes of 
the lattice and denote a pure lattice translation n by 

n = (n I' n2 , n,), (109) 

where n I' n2, n3 are integer components of n in the above­
mentioned frame. Generally, we will denote a vector in di­
rect space by its components relative to this frame in which 
unit vectors correspond to a single lattice spacing. 

The rotation-reflections, 
~ 

cp" i = 1,2, ... , 48, (110) 

occurring in 0 ~ belong to the point group 0h' Therefore, P 
~ isomorphic to 0h' We will use the following convention for 
cp, : 

~,+ 12 = ~13o~" i = 1,2, ... ,12, (III) 

and 
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~'+24=~250~" i=1,2, ... ,24, (112) 

where ~I is the identity, ~I3 is the inversion, and ~25 is the 
twofold rotation around the (1,1,0) direction (note T - - 1). 
This is equivalent to the following decomposition of 0h: 

Oh = !~,J251oTh = !~"~25Jo!~"~131oT, (113) 

where Tis the tetrahedral group (not to be confused with the 
Bravais lattice). 

In order to determine coset representatives 

p" i=1,2, ... ,48, (114) 

forming P, we must make a choice of fractional translations 
7,. The conventional choice (Refs. 16 and 17) is 

-+ {O, i = 1,2, ... , 24, 
7, = -+_ I I I 

7=(2' 2' 2)' i = 25, 26, ... , 48. 
( 115) 

Therefore 

i = 1,2, ... , 24, 

i = 25, 26, ... , 48. 
( 116) 

For the coset representatives p, hold relationships similar to 
Eqs. (111) and (112): 

p,+ 12 =PI30p, i= 1,2, ... ,12, (117) 

and 
p, +- 24 = P25 0P, i = 1,2, ... , 24. ( 118) 

For the sake of completeness explicit forms of the rotation­
reflections ~, and of coset representatives p, are given in 
Table I. 

Since the Bravais lattice of 0 h is simple cubic, its reci­
procallattice will be also simple cubic. Therefore, the first 
Brillouin zone is a cube. We will consider a representation 
associated with the face centers (X-point). Therefore, let us 
choose 17 

k, = (0, !, 0). ( 119) 

(We will always express the vectors in the direct space in 
units of the primitive lattice vectors, while the vectors in the 
reciprocal space, which includes a factor 21T, we will define in 
units of primitive reciprocal lattice vectors.) Rotations ~2 
and ~3 generate the star [1,2,3] of k,: 

k2 -~2·k I = (0, 0, ~), 
k'-~3·k, = (!, 0, 0). 

Using Eq. (66) we have immediately 

(120) 

(121) 

X (nop) = (- l)"X,(p) + (- l),,~dp) + (- 1)"'X3(p), 
(122) 

where n = (n" n2, n3) andp is a coset representative from 
Table I. Therefore, we need only to determine partial char­
acters X a of the coset representatives p. 

From Ref. 17 we determine partial characters associat­
ed with a particular representation X (3). These partial char-
acters are listed in our Table II. -+ 

We note that the number of vectors in the star of k, is 

s=3 ( 123) 

and the representation X (3) is six-dimensional: 

c = I X a (p,) = 6. (124) 
a=1 
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TABLE I. Rotation-reflections~; of Oh and the point group coset repre­
sentatives p; of 0 ~. We denote the identity by t!. By cm (ii) we denote coun­
terclockwise rotation for 21T/m around ii (as seen from the top ofii). u(ii) is 
a reflection in a plane perpendicular to ii. Sm (ii)==u(ii)ocm (ii). The inversion 
we denote by i. Superscripts denote powers. X, y, z denote unit vectors in 
positive directions x, y, Z, respectively. A bar over a number (a letter) 
denotes minus the number (the letter). All operations~; leave the origin 
invariant. For convenience we show also the result of actions of ¢;, ¢ ;- I, 

andp; on a general vector (x, y, z). We also include notation h; of Refs. 17 
and 21 corresponding to ¢,. Finally, we explicitly show fractional transla­
tions 7; and the inverse p;- I of a coset representative p,. The fractional 
translation 7 is equal to (!,M). 

'9, '9,-(x,y,z) h ~'.(x,y,z):r: p,={',I'I',} p,-(x,y,z) 

(X,y,Z) h, (x,y,Z) 0' {OlE} (x,y,Z) 

2 c,(1,1,n (z,x,y) h, (y,z,x) 0 {Olc,(1,1,n} (z,x,y) 

3 c:(1,1,1) (Y,z,x) h5 (z,x,y) 0 (Olc:(1,1,1)} (y,z,x) 

4 c, (1U) (Z,x,Y) h12 (y,z,x) 0 {OIC, (1,1,1)} (l,X,Y) 

5 c: (1,1,1) (y,z,x) h, (z,x,y) 

6 c,(1,1,1) (Y.z,x) h, (z,x.y) 

c: (1,1,1) (l,x,Y) hll (y,z,x) 

8 c,(1.1,1) (y,z,x) hB (z.x,Y) 

0- {OIC: (1,ij)} 

0- {OIC, (1,1,1)} 

o {OIC: (1.1.I)} 

o {Olc, (1.1.1)} 

c: (1,1,1) 

10 c,(x) 

11 c ,(Y) 

12 c,(z) 

13 

(Z,x,y) h,o (y,z,x) 0 (Olc:(1,1,1)) 

(x,Y,z) h, (x,y,2) 0 (OIC,(x)} 

(x,y,z) h, (x,y,Z) 0 (Olc,(y)} 

,",y,z) h, (i,y,z) 0 (OIC,(z)} 

(x,Y,i) h'5 (x,y,Zl 0 (Ol" 

14 5:(1,1,1) (i,X,Y) h33 (y,z,x) 

15 s,(I,I,n (y,z,x) h" (l,X,Y) 

16 5:(1.1,1) (z,x,y) h36 (y,z,x) 

17 5
6

(1,1.1) (y,l,X) hll (z,x,y) 

18 5: (1,1,1) ('I, z,x) h30 (z,x,Y) 

19 5, (1,I,i) (Z,x,y) h'5 (y.z,x) 

20 5:(1.1.1) (y,z,,, h12 (Z,x,Y) 

21 5, (1.1,1) (i,x,y) h" (y,z,x) 

22 a (X) (x,y,z) h16 (X,y,z) 

o {DIs: (I,I,I)} 

0- (Ols,(I,I,I)} 

o {Dis: (1,1.1)} 

0- {Dis, (1,1-,,)) 

0- (015: 11,1 ,I)} 

o {DiS, (1,1,1)} 

o {OIS: (I,I,I)} 

a {Dis, (1,1,1)) 

a {Ola (x)) 

23 a (y) (x,y,z) h" (x,y,z) 0 (Ola (y)) 

(I', z,i) 

(y,z,x) 

(Z,X, 1') 

(y,z,x) 

(zx,y) 

(x 'I, i) 
( x,y,Z) 

(X,y,z) 

(X,y,Z) 

(i,x,Y) 

(y,z,Xl 

(z,x ,I') 

(Y,l,X) 

(y,z, x) 

(z,x, y) 

(Y,z,i) 

(z,x, y) 

(x,y,z) 

(x,y,z) 

, 
P, 

24 a(z) (x,y,z) h'B (x,y,z) a (ala (z)) (x,y,Z) P" 

25 c,(I,I,o) (y,x,z) h13 (y,x,z) ~ {;IC, (I,I,O)} (Y,-y,Y,-x,Y,-z) P'5 

26 c,(O,I,l) (x,z,y) h n (X,l,Y) ; (;lc,(O,I,l)} (\I,-x'y,-z'y,-y P" 

27 c, (1,0,1) lZ,y,X) h21 (i,Y,X) ; {;IC, (1,0,1)} (V,-z,Y,-y,'I,-x) P" 

28 cz (x) (x,z,y) h
20 

(x,z,y) ~ {~tc~ (xH (Y2+X,V2+Z,~-Y)(1.0,1)oP33 

29 ct (9) lZ,y,x) h" (z,y,x) ; {;IC~ (9)} (Y,-z'y,+y,'I,.x)(1,I,O)'P
12 

30 c,(1,O,I) (z,y,x) h" (Z,y,X) 7 {71C, (I,O,n) (V,.z,l,-y'\!, 'X) 1,0,1)'P,o 

31 c,(O,I.n (i,z,y) hIS (i,z,Y) 7 {71c, (O,I,n) (V,-x,'I,'z,'1, .y) O,I.1)'P
31 

32 c,(Y) (z,y,x) h" (z,y,x) 7 {7IC, (y)} (i,'z,I,'y,l,-x) O,l,l)'P" 

33 c, (x) (x,z,y) h19 (X,z,y) 7 {7IC, (x)} (Y,.x,Y,-Z,Y,.y)(I.1.0)'p" 

34 c: (z) (y,x,z) hIS (y,x,z) ~ {~IC~ (z)} (!;+Y'Y2-x,V2+z) Q,;".1)oP35 

35 c, (z) (Y,x,z) h" (y,x,z) T {Tic, (Zl) (\I,-y,!"'x,!,,.z) 1,0,1)'P" 

36 c, (1,1,0) (y,x,z) h16 (y,x,ll T {Tic, (I,I,O)} 1l',.y,!', .. ,!',-z)!1j,O)'P
36 

37 a (1,1,0) (y,x,z) h37 (y,x,z) T {Tla (lj,O)} (\I,.y,!".x,!".z) i,U).p" 

38 a (0,1,1) (x,z,Y) h" (x,z,y) T {TI a (O,I,I)} (\!"x,!",z'\!,.y)(l,i,I).p" 

39 a (1,0,1) (z,y,x) h" (z,y,x) T {Tla (I,O,I)} (12'z,\!,.y,!",x) (I,l.1).p" 

40 5, (X) (i,z,y) h" (i,z,y) T {TiS, {Xl} (Y,-x,/',-z,!',.y)(oj,O)'p" 

41 5, (y) (Z,y,X) h" (Z,y,X) T {TiS, (y)} (i,.z,/"-y,\I,-x)(o,O,I).p,, 

42 a (1,0,1) (z,y,x) h" (z,y,x) ; {TI a (I,O,I)} (Y,-z,/".y,i,-x) (0,1.0 )'P" 

43 a (0,1,1) (x,z,y) h" (x,z,y) T {TI a (0,1,1)} (i, .. ,i,-z,/',-y) 'i,o,o).p" 

44 s~ (9) ("y,X) h'B (z,y,X) T {Tis; (Yl) (i,-z,l1-y,'I,.x)(I,O,O)'p" 

45 s~ (X) (i,z,y) h" (x,z,y) ; ITls; (x)) (Y,-x,I1'z,/"-y)(O,O,,),p,, 

46 5, (:1) (y,x,z) h" (y,x,z) T {Tis, (z)} (y,-y,\I,.x,'I,-z) 11.0,0)'P" 

47 s~ (z) (y,i,z) h38 (y,x,z) -; {TISZ (2)} (l;+y,~-xIY2-z)(O,1.0)oP1,6 

48 a (1,1,0) (y,x,z) h,o (y,x,z) T {Tla (I,I,O)} (y,-y,/',-x,\I,.z) (O,O,I)'p" 
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TABLE II. Partial characters 17 of the coset representatives of Table I for 
the X (3) irreducible representation of 0 ~, 

P, P, P, to P
9 PlO Pll P" P

13 
to P

48 

X,ip, ) 2 0 -2 -2 2 0 

X,iP i ) 2 0 2 -2 -2 0 

x
3

ip, ) 2 0 -2 2 -2 0 

Therefore, elements ofKer 0 h must have partial characters 
equal to 2. By inspection we find from Eq. (122) and Table II 
that 

Ker T = [(2nl' 2n2, 2n3) J, ni = 0, ± 1, ± 2, .. " 
(125) 

which corresponds to doubling of the unit cell in all three 
directions, and 

Ker Oh = [PI' (1,I,O)oPlo, (O,I,I,)oPII' (1,0,1)°PI2l, 
(126) 

which is isomorphic to the point group D 2• It is easily veri­

fied that Ker Oh = D 2, as given in Eq. (126), is indeed a 
group with the composition law 0, modulo Ker T. For exam­
pIe, 

[(I,I,0)oplO]2 = (1,1,0)o(1,T,0)Op7o 

= (2,0,0)oPI 

which is "equal" to PI' since (2,0,0)EKer T. 

(127) 

Elements ofT, cf. Eq. (37), can be obtained either from 
the coset decomposition of T with respect to Ker T or more 
readily as those vectors of T which belong to a single cell of 
Ker T. We take this cell defined by the origin and the three 
basis vectors 

(2,0,0), (0,2,0), (0,0,2) 

of Ker T. Therefore, 

( 128) 

and 

T = {O,( 1,0,0),(0, 1,0),(0,0, 1 ),( 1, 1,0),( 1,0, 1 ),(0, 1, 1 ),(1, 1, 1) l 
(129) 

ITI =8. (130) 

In order to find the group P, cf. Eq, 129), it is easier to 
find the quoti~nt group OhlD2 in terms of ¢i and then simply 
replace each ¢i by the associated Pi. The coset decomposi­
tion of Oh with respect to D2 thus gives 

P = [PI' P2' P3' Pl3' P14' P15' P2S' P26' P27' P37' P38' P39l 
and (131) 

IPI = 12. (132) 

P is isomoryhic to D 3d • In fact we have chosen coset repre­
sentatives ¢i in such a way that they indeed form a group 
with the same law of composition as in P (0, modulo T) and 

the requirement modulo Ker P is automatically satisfied. 
We could have chosen, for example,ps in place ofp3. Then 
we would have had P2oP2 = P3 = P5 0PI2 and the condition 
modulo Ker P would have had to be applied in order to 
removepl2· 
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! ABLE III. Multiplication table for coset representatives p, which are in p, Eq. (131). The result is expressed modulo Ker T, Eq. (125). In this table 

t= (1,1,1). 

Pi P, P2 P3 P'3 P'4 P'5 P25 P26 

Pi PiOP 

P, P, P2 P3 P'3 p,. P,s P2S P26 

P2 P2 P3 P, P,. P,s P13 P 27 P2S 

P3 P3 P, P2 P,s P13 p,. P'6 P27 

P13 P13 p,. P,s P, P2 P3 10 P37 10 P3B 

p,. p,. P,s P13 P2 P3 P, to P39 to P37 -
P,s P,s P 13 p,. P3 P, P 2 to P3B 10P 39 

P,s P,s P'6 P27 P37 P3B P39 P, P, 

P26 P'6 P27 P2S P3B P39 P37 P3 P, 

P17 P27 P2S P26 P39 P37 P)8 P, P3 -P37 P37 P3B P39 P2S P'6 P27 I· P,) I· p,. 

- -P38 P3B P39 P37 P 26 P27 P" lop,s 

-P39 P39 P37 PJB P27 P,s P26 10 P,. 

We note at this point that the matrix group R is a group 
of ITI IPI = 96 different 6X 6 matrices. 25 Therefore, a direct 
handling of this group may be quite elaborate. 

Before proceeding to the next steps it is useful to estab­
lish a multiplication table (multiplication 0) for elements of 
P. This is done in Table III. A look at the table immediately 
verifies that P is a group with multiplication 0, modulo T. 

Next we have to construct in an ascending fashion all 
the substars. We start with the subset [k I }. We generate the 
reciprocal lattice, cf. Eqs. (76) and (119), 

[(ml' m2' m 3) + il(Od, a)} = [(ml' m z12, m 3)1. (133) 

where m l , m2' m 3, and II can be any integers. Taking the 
intersection between Eq. (133) and [kl' k2' k3) we obtain [cf. 
Eq. (78)] the associated substar [1]. Clearly the direct lattice 

is 

(134) 

10 P13 

10 P'S 

which corresponds to the doubling of the unit cell in one (y) 
direction (nl' nz, and n3 are integers). The group T[I] is ob­
tained by factoring out Ker T from T[1] (or, equivalently, by 
selecting all lattice translations of T[l] from a single cell of 
Ker T), 

T[l] = [0,(1,0,0), (0,0,1), (l,O,lll. (135) 

Similarly, cf. Eq. (87), 

F[l] = [0, (0,1,0)). (136) 

The group Pl!] is obtained by selecting those elements ofP 
which leave kl invariant, modulo a reciprocal lattice vector. 
These elements are easily identified using Table I. We find, 
for example, 

¢13.kl = - (O,~, 0) = m + (O,~, 0) = kl (137) 

since m = (0,1,0) is a reciprocal lattice vector. The group 
P[l] is 

(138) 

which is isomorphic to C2h • 

Subsets [2) and [3} need not be examined since they 
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P27 P37 P38 P39 

P27 P37 P3B P39 

P26 P39 P37 P38 

P2S P38 P 39 P37 

10 P39 10 P2S to P 26 tOP27 

to P3B to P,7 lOp,s to P'6 

10 P37 10 P'6 I· P 2? to P,s 

P3 P13 p,. P,s 

P, P,s P13 p,. 

PI P14 P,s P13 - -t • P,S 10 P, 10 P 2 IOP3 - - -to pu. top J 10 P, 10 P2 - -10 P13 10 P, 10 P3 10 P, 

are P-equivalent to [I}. Hence, the next subset to consider is 

[k l , kzl· 
Similarly to the previous case we find the associated 

substar to be [1,2] and 

T[I,2] = [(nl' 2nz, 2n3)j, (139) 

which is the doubling of the unit cell in two (y and z) direc­
tions (n I' nz, n3 are integers). Furthermore, 

T[I,2] = [0, (I,O,O)J, 

F[I,2] = [0, (0,1,0), (0,0,1), (O,I,I)j, 

and 

(140) 

( 141) 

(142) 

which is isomorphic to C2h . It is important to note that rota­
tion-reflections entering in P[1,2] only need to leave the set 
[1,2] invariant, modulo the reciprocal lattice, independent of 
ordering. For example, 

¢26.kl = - (0, a,!) = (0,0.1) + k2 = k2 (143) 

and 

¢26.k2 = - (0,1, 0) = (a, T, 0) + kl = kl; (144) 

hence, 

¢2dI,2] = [2,1] = [1,2J (145) 

and P26 belongs to P [1,2]. 
Subsets [ 1,3 J and [2,3} are clearly P-equivalent to 

[1,2} and need not be examined. Thus, the only remaining 
subset is the whole star [1,2,3] which is trivially a substar. 

We have 

and 

T[I,2,3] = Ker T, 

T[l,2,3] = [OJ, 
F[l,2,3] = T, 

P[I,2,3] = P. 
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TABLE IV. Substars [a.p •... j and the associated groupsT[a.p •... j. F[a.p • ... j. P[a.p • ... j. T[a.p • ... j. P[a.p •... j for irreducible representationX(3)ofO ~. 
GroupsP[a.p •... j = P[a.p • ... jo Ker O. are denoted as the corresponding point groups. The point groups are also indicated for P[a.p • ... j. n" n2• and n, 
are arbitrary integers. Ker 0 •. modulo T[a. P . ... j. is also given. 

[a,fl,ooo ] [11 [ 1,2 ] [ 1,2 ,3] 

T la.fl, ] {0,(1,0,0),(O,0,1),(1,0,1)1 {o, (1,0,0)1 (01 

{0,(O,1,0) I {Q,(O,1,0)'(0,0,1 1,(0,1,1) I 
(0, (1,0,0), (0, 1,0), (0,0,1), 

F [a,fl, ] 
(1,1,0),(1,0,1),(0,1,1 ),(1,1,1) I = T 

{ P" P 2' P" 

PI)' P,4 , P'S' 
Pla,fl, ] {P, ,P13,P27,P'91 = C 2h {P, ,P

'3
' P26 ,P36 I = C 2h 

P2S,P26,P27' 

P 37 , P36 , P39 I = D 3d =P 

T la,fl, 0 ] {(n , ,2n 2 ,n 3 ) I {(n , ,2n 2 , 2n 3 ) I Ker T = {(2n , ,2n 2,2n 3 ) I 

Pla,fl, ] D4h D4h °h 

Ker 0h {P, ,(D,1,0).PID' (0,1,0). P
II 

,p ,2 1 {P, ,(0,1,0). Pw,(O, 1,ll· p
lI

,(O,O,1)o P,) {P, ,(1,1,0)0 p
w

,(O,1 ,1)0 P
II 

,( 1,0,1) 0 p,2 1 

The results of the first two steps are collected in Table 
IV. The first substar to be examined is [1]. The point and 
translation groups of this substar are given in Table IV. In 
the same table we find the group of additional fractional 
translations. 

Next. wehavetoselectsubgroupsP~ ofP[1]. Thepossi­
ble subgroups are easily identified since P[I] is isomorphic to 
C2h . These subgroups are 

C2h = (PI,P13,P27,P39j, (150) 

Cs = /PI,P39J, (151) 

C j = (PI,P13j, (152) 

C2 = \PI,P27j, (\53) 

and 

C I = (pd· (154) 

We have already arranged these groups in a descending 
fashion (note that C2, C;. and Cs may be freely permuted 
without violating the descending ordering), and they will be 
examined in this order. 

Although all groups, Eqs. (150)-(154), are groups with 
the multiplication 0 modulo T they need not be groups with 
respect to 0 modulo T[1]. For the later to hold a proper 
choice of additional fractional translations from F[I) must 
be made. 

We start with P~ = C2h • Then from the characters, Ta­
ble II, we see that in P[I) only PI has nonzero characters 
Xu(ptl = 2. Therefore, regardless ofthe fractionals chosen, 
cf. Eqs. (71) and (85), 

(155) 

Since ilL) must be a positive integer and I C2h I = 4=>i(L) = !, 
we conclude that it is impossible to choose additional frac­
tional translations compatible with C2h • Now we can pro­
ceed with the next P~ = Cs • However, we want at this point 
to demonstrate explicitly the above-mentioned incompati­
bility. 
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From Table III we see in particular that (modulo T[I)) 

p~q = (O,I,O)op,. (156) 

The group eroperty requires that an additional fractional 
translationf39 from F[\] be added tOP39 in order that (modu­
lo T[1]) 

... 2 
(h9 0P39) = Pl' (157) 

Equations (156) and (157) imply 

J39 + ¢39139 + (O,I,O)ET[1), (158) 

but];9EF[I] impliesh9 = 0 or (0,1,0) which gives the left­
hand side ofEq. (158) as (0,1,0) or (0,3,0) which are not in 
T [1). This shows explicitly, that in accordance with a simple 
argument based on integer valuedness of i(L),J39EF[I) can­
not be chosen in such a way that Eq. (157) is satisfied. 

Now we proceed to the next P~, P~ = C" Eq. (151). 
However, the previous analysis demonstrated that a consis­
tent];9 cannot be found. This eliminates all groups contain­
ing P39' eliminating in particular Cs. 

Next, we analyze the group Ci , Eq. (152). Since PI can­
not have a fractional translation it is sufficient to determine 
compatible additional fractional translations];JEFfI] asso­
ciated withpl3' The only group requirement is 

(];3 0p13)2ET[I], (159) 

which is satisfied for both choicesJ13EF[1]. Therefore, there 
are two possible isotropy groups whose point groups are 

p~1 = (PI,P13J (160) 

and 

(161) 

both with the same subduction frequency i = 1 [cf. Eq' 
(155)]. The full space-group point groups which determine 
the crystallographic class are 

p~1 = (p"P13Jo( PI' (0,1,0)oplO,(0,1,0)oPll,PI2J (162) 

and 
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P~) = I PI' (0, 1,0)Op'3l 0 I PI>(O, 1,0)oplO(0, 1,0)op'l>p'2l, 
(163) 

where Ker 0h' given in Eq. (126), is written modulo T[I]. 
The crystallographic class is immediately determined as C; 
oDz = D2h • Therefore, the two point groups Eqs. (162) and 
(163), and also the two associated space groups, we denote 
D i'~ and D ~~, respectively. 

At this point it is useful to check if D i'~ and D h2h are 
equivalent in 0 ~. For this it suffices to look for the equiv­
alence of p~1 and P~), since Ker 0 ~ is an invariant sub­
group of 0 ~. In other words, we are looking for 

gEF[l]oP[l] 

such that 

(164) 

(165) 

modulo Ker 0 ~. In Eq. (164) a requirement that g should 
leave T[ 1] invariant was utilized together with a fact that 
elements of P L necessarily leave T[l] invariant (for a gen­
eral substar the requirement Eq. (164) is replaced by 

gEF[a,/3, ... ]oP[a,/3, ... ]). (166) 

Additionally, ifit is found thatg must be an improper oper­
ation, then the two space groups P~) and p~1 will have a 
different handedness. 

The condition of Eq. (165) when applied to Eqs. (160) 
and (161) reduces to 

(167) 

and a possible g is P27 which is a proper operation. Indeed, 
using Tables I and III, we find 

Pn '0(0, 1,0)opl3oP27 = P27o(0,2,0)op39 = Pl}' (168) 

Therefore, the isotropy space group D ~h is equivalent to 
D ~'I; and need not be separately analyzed. 

The next possible choice for P~ is P~ = Cz, Eq. (153). 
The associated crystallographic class is D 4 and the subduc­
tion frequency is I. Similarly, like in the previous case, we 
find that both additional fractional translations are allowed 
leading to 

(169) 

and 

D~) = I p,(O,I,O)oPnJol PI> (O,I,O)oplO, (O,l,O)op", p'2l. 
(170) 

This example offers an illustration of a point made earlier in 
the text: it is easily checked that D ~2) and D 1') are equivalent 
in O~, 

(171) 

but since the conjugation element (e.g.,PI3) must be an im­
proper rotation, the two space groups will be different and 
both must be considered. 

The last possible choice at this substar is P~ = C" Eq. 
(154). The associated crystallographic class is D z and the 
subduction frequency is 2. There is only one possibility: 
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TABLE V. Substar [I]. Point groups p~ (P~ ~P[l)), corresponding crys­
tallographic class (P~ 0 Ker 0h):1 point groups of isotropy groups PL (PL 

= P L 0 Ker 0h)' associated subduction frequencies i. and numbers of do­
mains [j (halves indicate conjugated groups but with different handedness). 
The translation group. Bravais lattice. is T[l) = I (n,. 2n,. n,ll where n,. 
n,. n, are integers. 

P' 
L 

class FI i fi 

C'h = {p, ,P13 ,P27 ,P 39 1 D'h -- - -
C = {P"P'9! D'd -- - -

5 

C = {p, ,P 13 ! D'h 
(1) -

1 12 , D'h ={p"P 13 1o KerOh 

C, = {p"p,,! 0, 
(I) - ~ 0, = {p" P'7! 0 Ker 0h 1 1 

{ll - E-D, ={p,.I0,1,OloP271o KerOh 1 , 
C, = {p, I 0, 0;1) = Ker 0h 2 24 

Di') = Ker Oh = I PI' (O,l,O)oplO' (O,l,O)op", PI2I· 
(172) 

The same conclusion could have been reached immediately 
using Lemma (iv) of the introductory section. 

In the above cases the checks of Steps 6 and 7 are triv­
ially passed due to Eq. (155). 

Isotropy groups so far determined are D i'~ , D ~'I, D ~21, 
D i'l whose point groups are given in Eqs. ( 162), (169), (170), 
and (172), respectively. The Bravais lattice is T [1], given in 
Eq. (134). These results are summarized in Table V. 

Since we exhausted substar [1] we proceed (Step 2, etc.) 
to analyze substar [1,2]. The point and translation groups 
of this substar are given in Table IV. In the same table we 
find the group of additional fractional translations. 

Possible subgroups P~ and associated crystallogra­
phic classes at substar [1,2] are shown in 1st and 2nd co­
lumns of Table VI. 

We start with P~ = C2h , the class D 4h , Table VI. An 
analysis similar to the one previously described gives as the 
only possible fractionals 

f'H = (0,1,0) or (0,0,1) 

and 

/26 = (0,0,0) or (0,1,1). 

Equations (173) and (174) provide four possible point 
groups 

( 173) 

(174) 

(175) 

(2) I -D 4h = PI' (O,O,lj opl3' P26, (0,1,Ojop38l o Ker 0h, (176) 

D~~ = I PI,(0,1,0)oPI3,(0,1,l)°p26,(O,1,O)op38l o Ker Oh' 
(177) 

D~4J, = I PJ,(O,O,I)oPJ3,(0,1,ljopz6,(O,0,1)°p38l o Ker 0h' 
(178) 

Groups in Eqs. (175)-( 178) can be checked for equivalence 
in F[1,2]oP[1,2]. For example, we look for gEF[1,2]OP[1,2] 
such that 
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TABLE VI. Substar [1,2]. Point groups P~ IP~ C;:;P[1,2]), corresponding crystallographic class (P~ 0 Ker Oh ):) point groups of isotropy groups PI. (PI. 

= Pl. 0 Ker 0h)' associated subduction frequencies i, and numbers of domains 8. The translation group, Bravais lattice, is T[I,2] = I (n 1> 2n 2 , 2n,)l where 

n " n2 , n3 are integers. 

p' 
L 

class PL i 6 

C 2h ={P, ,P'3'P26 ,P 3S ) D4h D~~I= (p,,(0,1,0)oP13 ,P26 ,(O,0,1) 0P
3s

}oK('rO
h 

1 12 

D~~I = (p" (0,0,1) 0 P13 ,P26 ,(0,1,0) 0 P3S } 0 K('r 0h 1 12 

C, = {p, ,P3S } D2d 
1'1 -D
2d 

= {p" (0,1,0) 0 P3S } 0 KerOh 

C,={p"P
13

} D DI'I={p P }oK('rO 
2h 2h l' 13 h 

D;~I= (p,,(O,l,O)o P,3 ) 0 KerOh 

131 -
D2h = (p, ,(0,0,1) 0 P'3 } 0 Ker 0h 

C 2 = (p, ' P26 ) D4 D~ll = {p, ' P 26 JOKer 0h 

C, = {p, } D2 D~')= Ker 0h 

a)-
K('rOh = {p, ,(O,1,0)oP lO ,(O,1,1)oP

11
,(O,0,1)oP'2) 

(179) 

We find here g = (0,0,1 )EF[ 1,2] which illustrates that g 
need not be strictly from P[I,2], as might have been in­
ferred from another example, Eq, (168), 

Similarly, we find D ~~ to be equivalent to D ~h' 
The "subduction frequencies" ta(D ~~) are found, us­

ing Table II, to be 

~ (D i") ~ (Di l )) I 
II 4h = 12 4h = 2' (180) 

implying 

i(D ~lh) = 1. (181 ) 

Since D ~Ih has no supergroups at substar [1,2], the condi­
tion Step 6 is trivially satisfied. On the other hand the con­
ditions Step 7 and Eq, (106), 

(182) 

are, according to Eq, (180), not satisfied, Consequently, 
D ~h passes both Steps 6 and 7, implying that D ~h is an 
isotropy group. 

The examination of other subgroups at the substar 
[1,2] offers no new insights into the method; hence we only 
summarize the result in Table VI. 

We proceed to the last substar [1,2,3], the complete 
star, The point and translation groups of this substar are 
given in Table IV. In the same table we find the group of 
additional fractional translations, 

Like at the previous subs tars, we first determine all 
possible subgroups P~ ofP[1,2,3]. At the same time we 
determine associated crystallographic classes (P~ 

o Ker 0h)' These are summarized in columns 1 and 2 of 
Table VII, 

From the characters, Table II, we see again that the 
only contribution to the subduction frequency comes from 
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2 

2 

2 

2 

2 

4 

PI' Consequently, 

ilL) = 6/1P~ I, 

24 

24 

24 

24 

24 

48 

( 183) 

each partial character giving a contribution 2/1 P~ I. Since 
ilL) must be a positive integer, groups P~ = D3d and P~ 
= CZh are automatically eliminated (IP~ 1 = 12 and 4, re­

spectively). 
The above groups are also eliminated bX virtue of the 

fact that no additional fractional translation!37 can be cho­
sen so that the square off'17op37 is equal to PI' modulo 
Ker T. A similar conclusion can be made for P38 and P39' 

Consequently, all groups P~ containing these elements are 
eliminated. These are, in addition to Dld and CZh ' C3v and 

C" 
Using the multiplication table, Table III, and consid-

ering squares of elements P25,P26' andp27' we can find possi­
ble additional fractional translations: 

and 

125 = 0, (0,0,1), (1,1,0), (1,1,1), 

];6 = 0, (1,0,0), (0,1,1), (1,1,1), 

127 = 0, (0,1,0), (1,0,1), (1,1,1). 

(184) 

(185) 

(186) 

Similarly, the cube ofJ2 0p2 must give PI' modulo Ker T. 
This implies possible!2' 

12 = 0, (0,1,1), (1,0,1), (I,I,O). (187) 

Analogous considerations OfpI3,PI4' andp15 bring no 
restrictions on their additional fractional translations. 

Further restrictions arise from multiplications of dif­
ferent group elements. For example, in the case P~ 
= S6 = C3i the following relation must be satisfied: 

(/13 oP13)O(/2 0PZ) = (];op2)O(/13op13)' (188) 

This restricts 113 to 
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TABLE VII. Substar [1,2,3]. Point groups P~ (P~ ~ P[1,2,3]), corresponding crystallographic class (P~ 0 Kef Oh ),"1 point groups of the isotropy groups 
PL (P L = P LoKer 0h)' associated subduction frequencies i, and numbers of domains.5 (halves indicate conjugated groups but with different handedness). 
The translation group, Bravais lattice, is T[I,2,3] = ! (2n" 2n 2 , 2nJll where n" n2, nJ are integers. 

P' 
L 

DJd = {p"p, 'PJ ' 

P13 ,P14' P,s ' 

P15 , P26 ,PZl
, 

P", , P3B ' P39 } = P 

0 3 = {p, ,p"PJ,P2S,P26,P27} 

class i 5 

° 0(1)= { P, , P2 I P3 I P25 I P26 ,p 27 } 0 KE'r 0h 

d21 
= {p, 'P 2'PJ ' (1,1,1) 0 P25, (1,1,1) 0 P26 , (1,1,1) 0 P

27 
} 0 Ker 0h 

'% 
'% 

C3 , = {p, 'P2 ' P3, PJ7 , PJB ' PJ9 } 

S6 ={p"P2 ,PJ ,P13 ,P14 ,P,s} 

C2h ={p"p'J'P 2S 'P J7 } 

CJ = {p"p"P3 } 

Cs ={p"PJ7 } 

C = {P" P
'J 

} 

C 1 = {P, I 

/13 = 0, (1,1,1). 

T 
d 

T(1) - {p P P P P P 10 Ker ° 
h - l' 2' 3 I 13 I 14' 15 h 

(1) -
D2h = {P

"
P 'J 1

0 KerOh 

D~2hl = {P" (0,0,1) 0 p ,J } 0 Ker 0h 

D~'1 ={p"P2s l oKerOh 
D~2) ={p, ,(O,O,l) 0 P2s IoKer 0h 

0(11 = Ker ° 
2 h 

(189) 

A similar treatment gives all possible choices of additional 
fractional translations and of associated point groups PL' 
Since the actual manipulation does not bring any new in­
sights into the technique we omit it and we only give the 
results in Table VII. 

However, we note that all subgroups so obtained are 
isotropy groups; that is, they pass Steps 6 and 7. This can be 
seen from Eq. (183). For example, at the same substar, PL , 

CPL , implies IPL , I < IPL , I and i(Ld > i(L2)' and Step 6 is 
passed. Similarly, 

" ~ (P) 2 L la L =-IP I 
mc[1.2.3h[a', .. [ L 

and Step 7 is passed. 

or 4 ...Lo 
IPLI r , 

(190) 

Also we emphasize that again groups equivalent in 0 ~ 
but different space groups occur due to equivalence by an 
improper operation (only). These are 0 (I) ~O (2) and D ~ll 

~ D ~21 which are in both cases equivalent under conjuga­
tion by the inversionp13' Note also that in these cases the 
number of the domains {j is actually a half of its usual val-
ue. 19 

The last step which remains to be performed is an actu­
al identification of conventional space-group labels for all 
isotropy space groups associated with point group coset 
representatives given in Tables V-VII. 

Given TL and PL we have already given full transla­
tion TL and point P L groups in Tables IV and V-VII, re­
spectively. Then the first step in the identification is to ex­
press all fractional translations in terms of the new Bravais 
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3 

3 

3 

3 

6 

16 

32 

96 

lattice. After this is done, a translation of the origin and 
renaming of the axes may be required before the identifica­
tion can be made. These steps are best illustrated in an ex­
ample. 

Let us take the group L given by T L = T[l] and P~ 
= C2 • In Table IV we find 

TL =T[I]=I(n l,2n2,n3 )1, nj=O, ±1, ±2, ... , 
(191 ) 

which determines the new Bravais lattice. In Table V we 
find 

PL = D ~I = 1 PI,P271 01 P1,(0,1,0)oplO,(0,1,0)OPII,P121, 

(192) 

where we have chosen D ~I as an example. Now, we have to 
reexpress all fractional translations in terms of the new 
Bravais lattice. Therefore, 

P27 = I (!, !, !) 1¢271 
in the old lattice, becomes 

P27 = I (!, !, !)I¢27l 

(193) 

(194) 

in the new lattice. Similarly, (0, 1,0)oplO becomes (O,!,O)oplO' 
etc. 

Next, we choose to make an identification according 
to Ref. 16. There we find that for the crystallographic class 
D4 the unique tetragonal axis is chosen to be the z axis. 
Therefore, we must take an equivalent group toD ~ll, name­
ly, we rotate the coordinate frame: 

D~ll~ P3-loD~IJop3 

= I PI' P2sl 0 I PI' PlO' (O,O,!)o(O,O,!)OP12 J (195) 
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and 

(196) 

At this point it is important to note that the new translation 
group is now also rotated, 

TL = I(n l , n2 , 2n3 )J, ni = 0, ± 1, ± 2, .... (197) 

Finally, we make the shift ofthe origin in the old lat­
tice to (!,O,!) [in the new lattice, to (!,O,!J]. This results in 

D ~II = I (x, y, z), (x, y, z + !), (x, y, z), (x, y, z + !), 
(y, x, z + l), (y, x, z + i), (y, x, z + i), 
(y,x,z+!J), (198) 

where we expressed the elements of D ~II as the coordinates 
of a vector into which a general vector (x, y, z) is trans­
formed. These are nothing else but the coordinates of equi­
valent positions of a general vector as given in Ref. 16 for 
the space group D ~. Therefore, we complete our identifica­
tion 

(199) 

Identifications of other space groups follow the same 
pattern. The result is summarized in Table VIII.. With this 
we have completed a determination of all isotropy space 
groups of 0 h associated with its irreducible representation 
X (3). The results here agree with those of Ref. 23. 

We conclude that in a phase transition driven by an 
X (3) order parameter the symmetry may change from 0 ~ 
only to one of its isotropy groups given in Table VIII. 
Further restrictions on simple continuous transitions come 
from the maximality conjecture6

•
7 and/or the actual mini­

mization which also require the utilization of the results 
presented in Table VIII. This additional analysis will be 
explained elsewhere.s 

We also note that an experimentally observed low­
symmetry group C!h (doubling in x andy directionsf6 in 
A 15 superconductors is not among those listed in Table 
VIII implying that 0 h to C!h transitions are either not 
driven by an X (3) order parameter, or an additional order 
parameter plays an important role in the transitions. 

v. DISCUSSION 

In the preceding sections we have developed an algo­
rithm for systematic calculation of isotropy groups for irre­
ducible representations of space groups. Such calculations 
are necessary in the Landau theory of structural phase tran­
sitions in crystals. Therefore, both from a physical as well 
as mathematical point of view, it is needed to calculate iso­
tropy groups for all irreducible representations of all space 
groups. Our algorithm has been designed for such a task: 
we have formulated the algorithm in such a way that it may 
be adopted for use on computers. At the present stage such 
a general calculation is not attempted. However, success of 
various computer applications in group theory is encourag­
ing27 and we believe that our algorithm will prove useful. In 
the meantime some improvements of the algorithm may be 
sought. Firstly, it might be advantageous to reformulate 
the algorithm in such a way that it uses only generators and 
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TABLE VIII. All isotropy space groups L of the space group O! for the 
irreducible representation 17 X (3). Associated Bravais lattices TL are given 
in terms of primitive translations of the Bravais lattice of 0 ! (n" n2, n3 are 
integers). Vector To, expressed in terms of primitive translations in O!, 
denotes the shift of the origin necessary to transform elements of L, Table 
I, into a frame in which they coincide with the corresponding ones of Ref. 
16. The last two columns give the subduction frequency ilL ) and the num­
ber of domains which occur in a corresponding transition (halves indicate 
equivalent space groups but with different handedness). 

L TL - ilL) 6 To 

0) { (n l' n 2J n 3)} - ° 
, 

h 

0 5 I (n, .2n, .n) )} - 1 12 
'h 

0' , 1 (n,. n ,. 2n) )} ('/" 0. '/, ) 1 '% 
0: {(n"n 2 ,2n))) ('/,,0. 'I, ) 1 12/2 

- -
Oil 

'h 
1(2n,.2n

"
n, )} ('/2,0, '/2 ) 1 12 

015 
4h I (2n,.2n, ,n) II ('/,.0, '/, ) 1 12 

0' 1 (2n,,2n,,2n) II - 1 16/2 

0' ((2n,,2n,,2n, )} - 1 16/
2 

T~ 1 (2n,,2n , ,2n))} - 1 16 

0' 1 (n" n 1 ,2n) ) } - 2 24 , 
o ~d 1 (2n" 2n , .n))} ('/,,0, '/,) 2 24 

Oil 1 (n,,2n,,2n))} - 2 24 
" D;h {(2n,,2n 2 ·n 3 )) ('/,,0,0) 2 24 
.) 

O'h { (2 n,. 2n 2 , n) ) I ( ;;; ,0, ° ) 2 24 

0' 4 {(2n,,2n 2 ,n] )} ( '/,,0, '/4 ) 2 24 

r 1 (2n" 2n , ,2n,)} - 2 32 

D'5 1(2n,,2n,,2n,)} - 3 48 ,h 

0" 
'h 1(2n,,2n,,2n)ll ( 0,0,'/, ) 3 48 

0: (( 2n" 2n
2

, 2n))) ('/"O,)!- ) 3 4B/2 

0: 1 (2n, ' 2n 2 ,2n 3 )} ( '/2' 0, li~ ) 3 "/, 
0) , (( 2n ,2n 2 ,n))} ( \/2 ,0,0 I 4 48 

0' ( (2n, ' 2n
2

, 2n
3

)} - 6 96 , 

relations. Secondly, the last step of the algorithm, the iden­
tification of space group labels has to be systematized.28.11 

Until the analysis of all space groups is made the algo­
rithm can be readily used for the analysis of a particular 
group and the representation at hand. The merit of the al­
gorithm is that it requires only knowledge of partial char­
acters of the representation. Furthermore, it gives a syste­
matic procedure ensuring that all isotropy groups will be 
determined. 

In conclusion we would like to emphasize again the 
relevance of isotropy groups in the theory of phase transi­
tions: Isotropy groups are the only possible low-symmetry 
groups occurring in a transition driven by an order param­
eter belonging to a given representation of the high-symme­
try group. The transition may be continuous, multicritical 
or even a "symmetry induced" discontinuous one. 29 This is 
a group theoretical conclusion independent of a particular 
theory used (e.g., Landau theory or renormalization group 
theory). Consequently, group theory alone cannot decide 
on the type of a transition. For this we must resort to a 
particular physical theory. 

In the case of the Landau theory it has been conjec­
tured that only maximal isotropy groups (other than G) 
may occur in a simple continuous transition. 6

•
7 Still, in or­

der to know exactly in which of the maximal isotropy 
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groups the symmetry will actually break it is necessary to 
minimize the Landau free energy. 

Minimization of the free energy reduces to a solution 
of a system of nonlinear equations. However, these equa­
tions transform as a vector under R. Hence, the knowledge 
of the isotropy groups may be used via projection operator 
techniques to solve the equations.s Therefore, the know­
ledge of isotropy groups does not only give all the possible 
low-symmetry groups but it also facilitates a systematic cal­
culation of actual minima of the Landau free energy. 

Note added in proof Counterexamples to the maxima­
lity conjecture have been found recently30 adding to the 
importance of the general method developed here. 

After the submittal of this paper, a paper by Deonarine 
and Birman31 has appeared. The results of the present pa­
per and its preprint contain and go beyond the results of 
Ref. 31. 
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